
A RAND NOTE

Knowledge-Based Simulation:
An Interim Report

Jeff Rothenberg, Sanjai Narain,
Randall Steeb, Charlene Hefley,
Norman Z. Shapiro

SnJuly 1989

DTJC
SEP 1 3 1982

ARA N D-v 8 for p13. T f I ell

RAN D 89 9 13 089

CT,.

THIS IDOCUMEN iS BEST

QUALI-Y AVAILABLE. TIMF COPY

KURNISRED TO DTIC CONTAiINED

A SIGNIFICANT NUMBER OF

Ft, ýP'(S J.HICB DO NOT

RAP'ODUCs LEGIBlY.

THIS DOCUMENT CONTAINED

REPRODUCED FROM BLANK PAGES THAT HAVE
BEST AVAILABLE COPY BEEN DELETED

The research described in this report was sponsored by the
Defense Advanced Research Projects Agency under RAND's
National Defense Research Tnstitute, a Federally Funded

Research and Developnient Cen~ter 'upported by the Office
of the Secretary of DefenF.e, Contract No. MDA903-85-C-0030.

The RAND Publication Series: The Report is the principal publication doc-

umenting and transmitting RAND's major research Findings and final research

results. The RAND Note reports other outputs of sponsored research for
general distribution. Publications of The RAND Corporation do not neces-

sarily reflect the opinions or policies of the sponsors of RAND research,

Published by The RAND Corporation

1700 Main Street, P.O. Box 2138, Santa Monica, (CA 9(f,106f-2138

ý:::AS Sl -ED

REPORT DOCUMENTATION' PAGF BEFORE_______________FORM

7 mEpopT "U.S-F. .2 oAý~~O ~ .~C~~ ArAk.CG ,4umSFA

N-2S97-D.\RACVTACESIOH.

3. Type aF REPORT 4 PER100 COVEREO

Knowledge-Based Simulation: An Interim Report Interim

7. AUTmOR(s) 8. CONTRACT OR C2QANr mumeeie*;

Jeff Rothenberg, Saniai Narain, Randall Steeb,
Charlene Hef 1ev, Norman Z. Shapiro %MfA903-85-C-0030

9. OtAPPORWIN 0JRGAMIZA?iOH t4AMIL ANO ACCA19S W0. PROGNIuid CLJdcN1.4 'POJECT, TAS

The RAND Corporation AE OKUI UGR

1700 Maina SLreet
Santa Mlonica, CA 904061

11. CON'rOtL4imGOFF~ICE 4AMgE ANQ AGOACS3 12. REPORT QATIE

Defense Advanced Research Projects Agency July 1989
Deprtmen of Defense 13'. Wumeet~ 09 WAGES

ArlngtnVA 22209 7

14. kiONI1OPINQ AGENCY MAMIE & A0ORFSU11 il ajrend~ Imm Conrnolinivg 01116) lIS. 5I1CURITY CI-ASS. (*I hi relport)

Unclassified

J SCM4 OU I. .

46. 01STRIOU1'ICK STATEMENT (*I thim Xwoorty

Approved f.or Public Release; Distribution Unlimited

ii. oisitietjiom sTATEmriir (oi the .aetr, diviord a" Slogi 20, if Eddiffrntfro Reprt

No Restrtcticns

14. SUPPt.,Eih4CNARV NOTES

Simulation,
Artific'.al Tntalligenc -),
Models
Reasoning. I

202 A$STP AC' fC(:*n11" an re-ope itdo it no,,e..ar on,0 identify by rplo0* -- #

Se'o r ..'erse side

00 . '1473 UNCLAqqTFIED

SuCu:RvT CL.ASSIorirATIOP4 :ý T
1

5: PAQ9 'w., 04to Z1i'.val

-UNCLAF FT-T -D
secuarv~ CILASSIFICATIopq Of ?b4is Pk"IC #an Data Ent.,I")

Simulation Is a modeling technique that is
widely used in such areas as policymaking,
Manufacturing, com.puter system design, and

military analysis. In spite of its
widespread use, current simulation
technology suffers from a number of serious
drawbacks that limit its power,
applicability, and credibility. The
Knowledge-Based Simulation (KBSim) project
at RAND is engaged in research aimed at
producing a new-generation simulation
environment that will greatly extend the
capabilities of current simulation
technology, particularly as applied to
analytic modeling. The KBSim project has
focused on reasoning in-simulation. /-%
representation of multiple relations among ' -
simulated entities, highly interactive
interfaces, sensitivity analysis, variation
of the aggregation level of a model, and
the modeling of "soft" concepts such as
initiative. This Note describes the KBSim
project, discusses its goals, and presents
an overview of its progress.

UNCLASSIFIED

1CMUNIT? CLASSIOP CA rION O F TmtS DagdWh .O E t f- .)

A RAND NOTE N-2897-DARPA

Knowledge-Based Simulation:
An Interim Report

Jeff Rothenberg, Sanjal Narain,
Randall Steeb, Charlene Hefley,
Norman Z. Shapiro

July 1989

Prepared for
The Defense Advanced Research Projects Agency

RAND
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

- Ini -

PREFACE

Simulation is a modeling technique that is widely used in such areas as

policymaking, manufacturing, computer system design, and military analysis.

Despite its ubiquity, current simulation technology suffers from a number of

serious drawbacks that limit its power, applicability, and credibility. This Note

describes the Knowledge-Based Simulation project at The RAND Corporation,

which is being conducted for the Information Science and Technology Office of the

Defense Advanced Research Projects Agency (DARPA), under RAND's National

Defense Research Institute (NDRI). The NDRI is a Federally Funded Research

and Developmnt Center sponsored by the Office of the Secretary of Defense. This

project is investigating ways of using knowledge-based techniques to produce a

new generation of simulation environments that allow building more powerful,

comprehensible, and reusable simulation models. The Note discusses the

problems with current simulrt;; ,n paradigms, identifies research issues intended

to address these problems, and presents interim results and directions for

continued research. It should be of value to developers of simulation environments

and researchers concerned with fundamental modeling issues. It should also be of

interest to modelers who build analytic simulations and to analysts who use such

simulations.

The work discussed here has been coordinated with several other ongoing

research projects at RAND, notably the Intelligent Database (IDB) project and the

Advanced Geographic Environment (AGE) project. Related RAND research is

described in McArthur, Klahr, and Narain (1984); Steeb et al. (1986); and

Cammarata, Gates, and Rothenberg (1988).

Accesion For

NTIS CRA&I
DTIC TAE3 0
tbnannour.ced 1]
Justifcatioin

By

Distribution I
Av.':'dability Codes

A, 0. arid I or

-V.

SUMMARY

Discrete-state simulation is a modeling technique that is particularly

useful for analyzing domains involving complex temporal phenomena whose

interactions defy complete mathematical analysis. Simulation models typically

consist of descriptions of real-world entities to be modeled and "first-order"

interactions among these entities; running the simulation to observe the effects of

these first-order interactions often reveals higher level interactions and effects

that were not known in advance, answering questions of the form "What if. . .

This traditional view of simulation (and the technology that supports it) is severely

limited in its ability to answer other kinds of questions of at least equal value; iý. is

also limited in its ability to represent a wide range of phenomena in ways that are

comprehensible to both model builders and users.

The lack of explicit representation of domain knowledge in simulations

makes it difficult to verify the correctness of their underlying models and makes

them hard to comprehend. Recent advances in object-oriented simulation

languages, rule-oriented approaches, logic programming, automated inferencing,

and interactive graphics are facilitating a new generation of simulation

environments. The synergy of these techniques promises to revolutionize

simulation, transforming it into something far more powerful, more useful, and

more believable. It is th is s3nergy that we call "knowledge-based simulation."

The Knowledge-Based Simulation ("KBSim") project at The RAND

Corporation is engaged in research aimed at producing a new-generation

simulation environment that will greatly extend the capabilities of current

simulation technology, particularly as applied to analytic modeling. This work

has focused on the following areas:

"* Reasoning in simulation

"* Representation of multiple relations among simulated entities

"• Highly interactive interfaces

"* Sensitivity analysis

- vi -

"* Variation of the aggregation level of a model

"• Modeling of "soft" concepts (such as initiative)

This Note describes the KBSim project, discusses its goals, and presents an

overview of its progress to date.

We have produced a number of papers summarizing our research results in

several areas. We have also produced several prototype facilities that demonstrate

new capabilities. The following summarizes these accomplishments and

discusses them briefly.

Reasoning in Simulation

• ROSS-in-Prolog and DMOD formalisms

- Proof-of-concept demonstration

Multiple Relations (and Extended Objects)

* Analysis of object-oriented simulation paradigm deficiercies

- Winter Simulation Conference paper (Rothenberg, 1986)
- KBSim Progress Report (this RAND Note)

Highly Interactive Interfaces

"* Graphics-delta, dependencies, demons

- Extended ROSS ("XROSS") capability

- Winter Simulation Confer 3nce paper (Cammarata, Gates, and
Rothenberg, 1987)

"* Graphics environment

- Graphics-in-LISP (GIL) capability using GKS graphics standard

Sensitivity Analysis

New propagative approach

- Analytic evaluation of the new approach (LISP)
- Initial prototype computational environment (LISP)
- RAND Note (in preparation)

Variation of the Aggregation Level of a Model

* Variable aggregation

- Demonstration

- RAND Note (in preparation)

- vii -

Modeling oi "Soft" Concepts

0 Identification of key issues and approaches

We have identified a wide range of issues and shortcomings in current

object-oriented simulations, based on extensive experience with this approach at

RAND and elsewhere. This has led to the initiation of the new language design

effort to be undertaken by the Transfer of Simulation Technology project at RAND.

We have implemented a subset of the ROSS language in Prolog as a proof of

the feasibility of using logic programming in an object-oriented style. This

demonstration formed the basis for the new DMOD language with which we are

pursuing these ideas further.

We have designed and implemented solutions to several kinds of artifacts

in simulations, having to do with the difficulty of keeping graphic displays up to

date without excessive coding effort on the part of the modeler (the "graphics-delta"

technique), with representing dependencies among simulation entities, and with

representing "autonomous" behavior in a simulation. These have resulted in an

interim, extended version of the ROSS language, referred to as XROSS (described

in Cammarata, Gates, and Rothenberg, 1987 and 1988).

We have built a graphics environment using the GKS graphics standard

and SunWindows, and have integrated this with the XROSS extensions described

above.

We have implemented a LISP program that analyzes the expected "payoff'

from our new sensitivity analysis approach; this led us to conclude that a

computational environment based on this approach would be well worthwhile. We

have implemented an initial prototype of such an environment.

We have produced a simplified demonstration that exhibits variable

resolution, i.e., varies the aggregation of simulated entities such as companies

and platoons. This also uses our graphics environment and XROSS extensions, as

well as incorporating the beginnings of a planning facility for modeling

decisionmaking.

In addition, we have explored the modeling of "soft concepts" (such as a

commander's use of initiative) and have identified some promising approaches to

integrating such models into battlefield simulations.

- viii -

We have coordinated our work on multiple relations with RAND's
Intelligent Database (IDB) project, and our ideas on extended objects are being

coordinated with RAND's new Advanced Geographic Environment (AGE) project;

our ideas on aggregation will be further developed in coordination with both of

these projects. Ultimately, we expect to use the Intelligent Database facility for

storing and retrieving permanent definitions of submodels, objects, events, and

cases, ard we may be able to use aggregated terrain data derived from the AGE

project. We also eventually hope to be able to use the results of the CPAS

(Concurrent Processing for Advanced Simulation) project to run our simulation

environment in a distributed manner for improved performance.

- ix -

CONTENTS

P R E FA C E iii

SU M M A R Y ... v

FIGURES AND TABLE ... xi

Section
I. INTRODUCTION .. 1

II. THE STATE OF THE ART OF SIMULATION 6

III. SIMULATION AND THE KBSIM PROJECT 12

IV. THE NEEDS OF SIMULATION BUILDERS AND USERS 17

V. KBSIM GOALS AND APPROACH 22

VI. KBSIM RESEARCH PROGRESS 30
O verview .. 30
Reasoning in Simulation ... 31
Multiple Relations (and Extended Objects) 45
Highly Inte-active Interfaces 47
Sensitivity , nalysis .. 50
Varying the Level of Aggregation of a Model 56
M odeling "Soft" Concepts ... 58
The River Crossing Scenario 60

VII. CONCLUSIONS AND FUTURE DIRECTIONS 62

Appendix: MODELING INITIATIVE IN COMMANDERS 67

BIBLIO G RAPHY .. 73

- xi -

FIGURES

1. Uses of m ilitary sim ulation ... 12
2. M odel of interest ... 18
3. Eventual external architecture of KBSim 24
4. KBSim internal layered architecture 25
5. KBSim and other projects at RAND 28
6. Eventual internal architecture of KBSim 29
7. KBSim tasks and goals ... 31
8. M ultiple views of a m odel ... 35
9. Simulation as a high-level function 51

10. Propagative sensitivity analysis 54

TABLE

A .1. Initiative conditions .. 70

-1-

I. INTRODUCTION

Modeling in its broadest sense is the cost-effective use of something in place

of something else for some cognitive purpose. Every model has a referent and a

purpose with respect to this referent, and it must be more cost-effective (in some

relevant coin) to use the model for this purpose than to use the referent itself

(Rothenberg, 1986 and 1989). Modeling thereforc makes it possible to study systems

that may be too dangerous, too expensive, or even impossible to observe physicAlly.

It has long been possible to build models whose complexity defies

undeT standing. One of the most common complaints among military analysts is

the incomprehensibility of the models available to them. The quest for detail, the

hunger for performance (to support this detail), and the "fetish of realism"

conspire to create huge models, whose correctness as programs (to say nothing of

their validity as models) can only be taken on faith. Though there is certainly

good reason to explore new techniques for increasing the detail of models and for

modeling new phenomena (as well as for improving performance), it is at least as

important to exploire new ways of improving their comprehensibility.

Incomprehensibility leads to two distinct (though related) problems. The

first is essentially a software engineering problem: An incomprehensible

program is unlikely to be correct, as well as being difficult to modify or maintain.

The second is a modeling problem: An incomprehensible model is unlikely to be

valid. Both the model and the program that implements it must be comprehensible

in order to have any confidence that the program correctly implements a valid

model. Even if a model can be validated (which is problematic in the military

domain), it is clear that an incomprehensible implementation of a model cannot be

guaranteed to preserve the model's validity. On the other hand, the most

comprehensihle implementation of an incomprehensible model (or of any model

that has not been vwilidated) can at best achieve "face validity" (the superficial

appearance of being valid).

Knowledge A, ased simulation is a new approach to modeling. Its goal is to

facilitate building simulations of greatly increased power and comprehensibility

by making use of deeper knowledge about the behavior of the simulated world.

-2-

Such knowledge is usually omitted from traditional simulations since they are not

able to utilize it; in some cases, the knowledge may be present implicitly, but

simulations remain powerless to interpret it or take advantage of it. This lack of

explicit knowledge in simulations limits them severely: It makes it difficult to

verify the correctness of their underlying models, makes them hard to

comprehend, and restricts the kinds of questions they can answer. Recent

advances in object-oriented simulation languages, rule-oriented approaches, logic

programming, automated inferencing, and interactive graphics are facilitating a

new generation of simulation environments. The synergy of these techniques

promises to revolutionize simulation, transforming it into something far more

powerful, useful, and believable. It is this synergy that we call '¶.nowledge-based

simul ition."

Simulation is traditionally conceived in a rather narrow sense. There is

considerable confusion in the literature about what the term really means (or ought

to mean) and how it relates to modeling as a whole (Greenberger, Crenson, and

Crissey, 1976; Kiviat, 1967; Quade, 1985; Hughes, 1984). Nevertheless, there is

general agreement that simulation involves some kind of behavioral analog of the

entity or phenomenon being modeled (Dalkey, 1968; Gass and Sisson, 1974). That

is, simulation is concerned with modeling the unfolding of events or processes

over time. Though simulation is often spoken of as using a particular kind of

model, it is more useful to consider it as a way of using a model, i.e., the process of

using a model to trace and (hopefully) understand the temporal behavior of some

system. A "simulation model" is any model designed for use in this way.

Unfortunately, this is often construed in its most limited sense: Simulation

is seen as the process of building a behavioral model (which may include

probabilistic effects), setting it up in some initial configuration, and then
"running" it to see what happens. This can be thought of as the "toy duck" view of

simulation ("wind it up and see where it goes"), which corresponds to asking

questions of the form "What if. -. ?"; i.e., "What would happen if a system having

the given behavior were to proceed from the given initial state?" While this ability

to run simulations and ask them "What if... ?" questions may distinguish them

from other kinds of modeling, it is only one of the ways that simulations can be

used. Freeing simulation from this limited, traditional view yields a powerful

new approach to modeling, with vast, untapped potential.

-3-

Developing the potential of this new approach will be of tremendous value to

modelers in both military and other domains, particularly when using simulation

for analytic purposes. Simulation is often a technique of last resort for

understanding systems that are too complex to be modeled in other ways; it has the

appealing quality of showing how a system behaves and evolves under certain

assumptions and conditions. But this is rarely an end in itself. More often, it is a

means of understanding causality or other implicit relationships (whether static

or dynamic) among elements of the system. This is particularly true of "discrete-

state" approaches to simulation, which are usually motivated by the lack of a more

definitive analytic understanding of the system being modeled; the hope is that by

running the simulation and observing its behavior, deeper understanding will

emerge.

In this pursuit, the traditional approach to simulation is sharply

constraining, since it only allows observing sequences (and consequences) of

events:

In principle... a simulation is the least desirable of models. It has
low insight, since it does not provide explanation of the observed
outcomes.... Nevertheless, it may be a correct choice as a model, if
only because no other choice is open.

-. Bowen (1978)

The "toy duck" approach to simulation can be thought of as performing a

degenerate form of inference, in which a result state is inferred from an initial

state.' To fulfill its true potential, simulation must be allowed to perform

inferences of a much wider variety, especially when used for analysis.

Appropriate techniques for performing such inferences have been developed in the

expert systems arena; these techniques rely on the explicit representation of

domain knowledge in symbolic form.

'It is possible to view any computation as a way of making explicit what is
initially only implicit, "inferring" the former from the latter. In the degenerate
case, this simply involves computing an explicit result that was implicit in a
progren's input (whp.re "input" is taken to include the program itself). For
example, a simple program that adds numbers can be thought of as "inferring"
their sum from the input numbers, along with the summation algorithm.

-4-

Knowledge-based simulation asserts that any model should take maximum

advantage of the knowledge available to it. Building a simulation model is a

knowledge-intensive task, yet much of the knowledge accumulated in this process

is typically discarded, being represented only implicitly-if at all--in the

resulting model. (In this context, knowledge can be operationally defined as

information that is represented in an explicit form that is understandable and

meaningful to humans, i.e., "human-meaningful" information.)

Most simulations specify only what action to take, based on the current

situation; they contain no explicit description of why the actions are necessary, no

representation of the motivation or intention of an object's actions, no depiction of

the reasoning process that leads to an action, and no explicit notions of causality or

other relationships among events. As a consequence, these simulations cannot

answer questions that require interpreting or reasoning about knowledge--even

when such knowledge could have been represented explicitly in the model with

relatively little effort.

Capturing this knowledge during the design of the simulation and

representing it explicitly in the underlying model allows asking a much wider

range of questions of simulations, extending far beyond "What if... ?" For

example, traditional simulations are generally incapable of explaining why a

given sequence of events occurred, nor can they answer definitive questions (such

as "Can this event ever happen?") or goal-directed questions (such as "Which

events might lead to this event?").

In addition to these reasoning limitations, the lack of explicit knowledge

limits a simulation's ability to interact intelligently, responding to the user's

perceptual and cognitive needs (for example, knowing what constitute
"exceptional conditions" in a simulation so that these can be brought to the user's

attention when they occur).

One of the central tenets of knowledge-based simulation is that the

knowledge required in building a simulation should be represented explicitly

whenever possible, in such a way that the resulting model will be amenable to

automated inferencing and querying by the user, in addition to simulation per se.

This approach is at once a broad new view of simulation and a merging of

traditional modeling with knowledge-based expert system techniques.

-5-

Although analysts have grown accustomed to the limitations of the

traditional form of simulation, freeing simulation from these limitations can

provide analysts with powerful new tools that will facilitate building, debugging,

and using analytic models. For example, traditional "What if... ?" simulation is

most appropriate when applied to situations requiring a choice of one of a small

number of alternatives, whereas simulation that goes beyond "What if... ?" is

potentially applicable to more open-ended questions, such as finding optimal

solutions or formt,:ting new policy. Similarly, providing explanation facilities

for simulations woulcd be of great help in debugging and comprehending the

behavior of models.

The Knowledge-Based Simulation (KBSim) project at RAND is exploring

new techniques for modeling in the sense described above. To focus our efforts, we

are developing several prototype military simulations that provide testbeds for

exploring knowledge-based simulation.

The remainder of this Note is organized as follows: Section 1H discusses the

current state of the art of simulation, focusing on modern object-oriented

approaches to discrete-state simulation. Section III provides what we feel is a

necessary (though rare) characterization of the uses of simulation in the military

domain and shows where our work falls within this context; Section IV motivates

our work in terms of the needs of simulation builders and users, according to this

characterization. Section V discusses our project goals and the approach we have

pursued, while Section VI discusses the derivation of our research tasks from these

goals and describes our results in detail. Section VII presents some overall

conclusions and suggests directions for fulure research.

-6-

II. THE STATE OF THE ART OF SIMULATION

This section provides background on the current state of the art of

simulation, focusing on modern object-oriented approaches to discrete-state

simulation, and showing how the KBSim project has grown out of previous RAND

research in this area.

The KBSim project is the descendant of many years of research at RAND in

the areas of modeling, simulation, gaming, object-oriented language design,

interactive graphics, and artificial intelligence (Al). RAND's long history of

simulation research has included the development of the widely used SIMSCRIPT

language (Kiviat, Villanueva, and Markowitz, 1968) and many theoretical and

experimental results in game theory, Monte Carlo simulation, and military

wargaming (Conway, 1962; Kamins, 1963; Ginsberg, Markowitz, and Oldfather,

1965; Sharpe, 1965; Voosen, 1967). (A well-known text on policy analysis notes that

'The Rand Corporation has been the site of more important methodological work

on modeling of various kinds than any other institution in the United States"

(Greenberger, Crenson, and Crissey, 1976).) Similarly, the work of Newell, Shaw,

and Simon at RAND in the 1950s (Newell, Shaw, and Simon, 1957; Klahr and

Waterman, 1986) was one of Al's earliest results and defined many continuing

focal points for Al research. More recently, RAND's work in expert systems has

produced the languages RITA (Anderson and Gillogly, 1976; Anderson et al., 1977)

and ROSIE (Sowizral and Kipps, 1985; Kipps, Florman, and Sowizral, 1987) as well

as a number of expert system applications such as LDS (Waterman and Peterson,

1981), TATR (Callero, Waterman, and Kipps, 1984), and SAL (Paul, Waterman,

and Peterson, 1986). Finally, RAND's research in interactive graphics has

produced the RAND tablet (Davis and Ellis, 1964), the GRAIL system (Ellis,

Heafner, and Sibley, 1969), and fundamental ideas on the use of interactive map

displays (Anderson and Shapiro, 1979).

RAND began applying Al and graphics to simulation in the late 1970s and

early 1980s. The development of the object-oriented ROSS language (McArthur

and Klahr, 1982; McArthur, Klahr, and Narain, 1984 and 1985) and its use in the

simulations SWIRL (Klahr et al., 1982) and TWIRL (Klahr et al., 1984) as well as

-7-

derivative work elsewhere (Nugent and Wong, 1986; Hilton, 1987) clearly

demonstrated the potential benefits for simulation technology. Subsequent work at

RAND ha, continued to build on this foundation, leading to research in areas such

as cooperative intelligent systems (Steeb et al., 1986) and tutoring tools for

simulations (McArthur, 1987).

This work has produced new technology that can aid in building,

maintaining, and understanding simulations. Object-oriented simulation as

implemented in ROSS provides a rich, lucid paradigm for building computerized

models of real-world phenomena. Its strength lies in its ability to represent objects

and their behaviors and interactions in a cogent form that can be designed,

comprehended, and modified by domain experts and analysts far more effectively

than with previous approaches (Klahr, 1985). It hides irrelevant details of object

implementation and allows model behavior to be viewed at a meaningful level.

The use of objects allows encapsulating information, associating the behavior of

an entity with its state definition, and modeling certain real-we rld entities

(particularly those that are relatively dense and unstructured, such as trucks or

aircraft) in a natural way. Similarly, it provides a natural way of modeling

static, taxonomic relationships among objects by the use of class-subclass

hierarchies, while minimizing the redundancy (and therefore the possible

inconsistency) of their definitions through the inheritance of attributes and

behaviors over these hierarchies. Finally, it provides a natural way of modeling

certain kinds of dynamic interactions among real-world entities by the use of

messages passed between objects.

Despite these achievements, howover, object-oriented simulation retains a

number of critical limitations in the power and flexibility of modeling, the

representation of knowledge, the integration of different modeling paradigms,

and the comprehensibility, scalability, and reusability of models (Rotbsnberg,

1986; McArthur, 1987). In particular, the treatment of objects, taxonomies,

inheritance, and messages in ROSS (and similar object-oriented languages) is too

constraining and provides too little leverage for performing the kinds of inference

discussed above. For example, the emphasis on class-subclass relations among

objects tends to ignore other, equally important relations, such as part-whole. More

fundamentally, the strict object-oriented approach leads to a preoccupation with

-8-

attributes (i.e., state) and behaviors (i.e., procedures), which produces a limited

view of discrete-state simulation.

Discrete-state simulation is an approach to modeling that views time as

consisting of discrete states rather than a continuous flow. In cases where the

reality to be modeled is continuous and can be described analytically (i.e., by a set

of closed-form equations of the form "ift) = .'.", analytic or numerical solutions

of those equations can be used to generate the time-dependent behavior required for

simulation. (Note that our definition of simulation as a way of using a model to

trace and understand the temporal behavior of a system allows us to consider

certain analytic models as simulation models.)

Though closed-form solutions are often mathematically elegant, their

elegance may make them cryptic and incomprehensible. There are also cases in

which analytic solutions are known but are computationally intractable.

Nevertheless, analytic models are appropriate in many situations, particularly

when dealing with complex physical phenomena involving vast numbers of

relatively small and similar entities whose individual interactions are relatively

simple and whose aggregate interactions permit statistical treatment. It is

important to allow the use of embedded analytic models in any simulation

environment, since such models often represent at least one form of complete

understanding.

There remains a large class of problems, however, that involve inherently

discrete phenomena or that are not well enough understood to b6 handled

analytically (i.e., which do not have formal mathematical solutions). For these, a

discrete-state approach is more effective. These problems usually involve small to

large (but not "vast") collections of interacting entities, each of whose behavior is

understood reasonably well in isolation and whose low-level, pairwise

interactions with each other are known but whose high-level, group interactions

are not well understood. The strategy of discrete-state simulation is to encode these

known, low-level interactions in the hope that the overall behavior of the resulting

simulation will approximate that of the reality being modeled and (ideally) thaz

higher-level interactions will reveal themselves.

The reality modeled by a discrete-state simulation typically consists of a

moderate number of entities having relatively distinct-or unique-behaviors that

cannot be accurately modeled by a small number of analytic techniques. These

-9-

entities typically fall into a relatively small number of "classes" of entities with

similar attributes and behavior. The ways that individual entities interact with

other entities within and across these classes, while often complex, are typically

understood in some detail; what is not typically known is how to describe the

aggregate behavior of collections of these entities.

Note that the behaviors and interactions of these entities may involve

probabilistic or stochastic effects; our view of discrete-state simulation is not

restricted to purely deterministic cases. Randomization may be used (1) to model

intrinsically random phenomena (such as weather), (2) to model deterministic

processes that are poorly understood (such as equipment failure), or (3) to eliminate

unnecessary detail by approximating a deterministic process (such as the arrival

of trucks at a depot) by a probabilistic one.

Time is dealt with in discrete-state simulations as a succession of separate

states in which entities interact; time advances by discrete state-transitions, either

at fixed "ticks" of a simulated clock (referred to as "time-based" simulation) or

whenever something significant happens (referred to as "event-based"

simulation).

Discrete-state simulation can therefore be viewed as a last resort for

modeling certain kinds of intractable problems. Its power lies in its ability to

reveal high-level patterns of interaction that cannot be recognized in other ways. It

is often possible to enumerate and describe a collection of entities and their ,

immediate interactions without knowing where these interactions lead; if this

knowledge is encoded in a discrete-state simulation and the behavior of the

resulting model is obse'-ved, deeper understanding will often emerge.

The object-oriented approach to discrete-state simulation uses objects to

encapsulate state and represents state transitions by messages between objects.

This distributes both the state of the simulation and the conditions for state

transitions among the objects in the model. While this serves the software

engineering goals of data hiding and modularization, it does not necessarily

allow optimal comprehension of the relationships among events (since their

definitions are distributed), nor does it enable inferences of the kind discussed

above. Although commercial research efforts in simulation are beginning to

examine some of these areas (IntelliCorp, 1985; McFall and Klahr, 1986), they have

tended to consider domains like manufacturing.

-10-

As has been pointed out in the literature (Gilmer, 1986), military simulation

is quite different from factory simulation, in which a relatively static collection of

objects interact with each other in limited ways in a highly structured world. In

contrast, military simulation typically involves a very dynamic collection of

objects that are continually changing their composition and are often created or

destroyed. These have constantly changing and often adversarial relationships to

one another and behave and interact in widely varying and unpredictable ways in

a world that is itself in constant flux. Furthermore, a wide range of phenomena

may have to be taken into account in a military simulation for it to be credible,

including factors such as terrain, weather, command and control, and human

decisionmaking. This lack of structure and inherent complexity make it difficult

to design military simulations and to comprehend, interpret, or validate them once

they have been built. Conventional simulation environments generally do not

address these problems. Our work in knowledge-based simulation is an attempt to

improve the power and comprehensibility of the object-oriented discrete-state

approach, as required for military simulation.

In addition, in order to be comprehensible and usable, a simulation must

allow users to query the simulation state graphically, view graphical explanations

of the behavior of the simulation (e.g., by animating "causal chains"), specify

scenarios graphically, and build or modify simulation objects graphically (for

example, defining and exercising new behaviors graphically). Similarly, it

should allow users to graphically display and edit diagrams or pictorial

representations of relationships among objects. This requires a highly interactive

graphics environment that is well beyond the capability of most conventional

simulation systems.

In summary, most simulations relate situations to actions with no explicit

description of why the actions are necessary, no representation of the motivation or

intention of an object's actions, no depiction of the reasoning process that leads to

an action, and no explicit notion of causality. This restricts the types of questions

simulations can answer to those of the form "What (happens) if. . . ?" (i.e., given

an initial situation, the simulation is asked to determine future states). Without

additional inferencing capabilities, simulations cannot answer questions about

what an object should do to accomplish some specified goal, which future states can

or cannot possibly exist, which alternative actions could improve an outcome, etc.

-11 -

These types of questions can only be answered by systems embodying a descriptive

model of the domain. Knowledge-based ("expert") systems contain such models

as well as the inferencing mechanisms needed for planning and problem

solving. Our goal is to extend these knowledge-based reasoning techniques and

integrate them with object-oriented discrete-state simulation. In addition, we

intend to take advantage of graphical interfaces for making simulations explain

their behavior and allowing users to build, modify, and control simulations morb

directly than is now possible.

-12-

III. SIMULATION AND THE KBSIM PROJECT

Although the foregoing discussion and much of what follows applies to

simulation in general, the focus of the KBSim effort is in military simulation,

which has many distinguishing characteristics, as noted above. However,
"military simulation" is not a single entity: There are at least three distinct uses

of simulation in the military context, each with its own characteristics and

requirements. These can be thought of as lying along a "continuum of

stringency," as illustrated in Figure 1. (The following discussion describes the

Procurement, tactics, Training, Embedded decision-
doctrine, requirements, exercises support

design, evaluation

Analysis Gaming Battle Mgmt

KBSIm

must be?

interactive 4/ V .1
flexible 4/

realistic V 4 V
valid 4/ .

reliable . 4/
realtime V 4/
portable /

survivable 4/

./ important 4 very important

Fig. 1-Uses of military simulation

-13-

details of the figure.) This section characterizes these different uses of simulation

and shows where the KBSim project falls within this context.

The left (least stringent and least constrained) end of the continuum shown

in Figure 1 represents the use of simulation for analysis, that is, to explore issues

and make decisions involving procurement, to evaluate tactics and doctrine, to

derive requirements for new systems, etc. The middle of the continuum represents

the use of simulation to provide a gaming environment for training or exercises.

The right (most stringent and most constrained) end of the continuum represents

the use of simulation in battle management, i.e., s. an embedded decision support

aid for commanders in the field. We discuss each of these briefly, since the

distinctions among them are important and are rarely made explicit.

The chart at the bottom of Figure 1 shows the relative qualitative importance

of various issues for simulations aimed at analysis, gaming, and battle

management; though this list is not exhaustive, it captures some of the major

factors involved in designing simulations. Since many of these factors are in

competition with one another, it is difficult to satisfy all of them at once (as

expressed in the computer science adage, "Fast, cheap, reliable: pick two"). It is

therefore necessary to choose a point along the continuum and attempt to satisfy the

most important factors at that point. The focus of the KBSim project (or any

simulation effort) can only be understood and evaluated in these terms.

Though some of the terms in the chart should be self-explanatory

(interactitc, flexible, valid, and portable), some warrant definition. For the

purpose of this discussion, we call a simulation realistic to the extent that the user

sees results as he or she would in the real world; this is not the same as its being

valid, which means that its results are correct, though they may riot be presented as

they would appear in the real world. We call a simulation reliable to the extent that

it can be counted on to keep running without unexpected interruption and to the

extent that its results are reproducible from one run to another; this is not the same

as calling it "robust," which would mean that it handled all cases, modeled all

relevant phenomena, etc. We call a simulation realtime if it is fast enough to be

used for making decisions in anticipation of real-world events that occur at their

natural rates (this is a somewhat specialized definition of the term). Finally, we

call a simulation =urvivablc if it can be run in a harsh field environment (such as

combat).

-14-

Analysis uses simulation to answer hypothetical questions in a fairly

unhurried and benign setting. This means that while reliability of the simulation

environmnt nt is desirable, it is not of paramount importance in this setting,

whereas realtime and survivability requirements are generally absent.

Performance is always important, but the emphasis for analytic simulations is

normally on validity (at least some kind of "face validity," such as monotonic

behavior); that is, the correctness of results is more important than the speed at

which they are produced. However, simulations that support analysis should also

be highly interactive to allow users to explore possibilities and understand the

behavior of the model (especially when answering questions beyond

"What if... ?"), though this is rarely done in current analytic simulations. This

requires that these systems have sufficient speed to be responsive, even though they

do not have to satisfy realtime constraints. In addition, analytic systems must be

flexible enough to allow users to direct the course of a simulation or modify the

model itself as their understanding evolves.

Despite their need for validity, analytic simulations need not necessarily be

"realistic" in terms or their presentation of results. Realism (especially graphic

realism, such as 3-D perspective, etc.) is often sought for its own sake in

simulation, since it is flashy and eye-catching; however, what is important for

analysis is the presentation of information to the analyst in an appropriate form

(i.e., one that is easily comprehended), for which realism may be helpful but is

neither necessary nor sufficient. Finally, although portability is useful for

analytic simulations (to allow sharing models within the analytic community),

this is usually not a primary requirement. However, it is desirable for *hese

simulations to be reusable to minimize the work of building new analytic models

that are similar to (or built on top of) existing models; this can be thought of as a

special kind of portability, i.e., across time.

In contrast to analysis, a gaming environment uses simulation to provide a

surrogate reality in which users can hone their skills or exercise procedures or

tactics. Though this has some overlap with analysis, the emphasis is on providing

a stable, repeatable environment for training or conducting exercises. This use of

simulation is analogous to the use of a flight simulator for training pilots and

crews. Of paramount importance for this purpose are the reliability of the

environment and the realism of its results. Reliability is dictated by the cost of

- 15-

.raining and running exercises involving many people and by the need for

repeatability of results.

In most current gaming applications, validity is not paramount, since the

simulation is typically being used to exercise procedural or tactical knowledge

rather than to evaluate alternative courses of action. Realism, as in the analytic

case, is relative to the needs of the system users. In this case, the users may be

trainees or participants in an exercise using the simulation directly, but they are

more likely to be intermediate support staff (often called "controllers") who

interpret the results of the simulation for the trainees or participants; in exercises

involving commanders, for example, these controllers play the role of the staff,

digesting and delivering information to the commanders. A realistic simulation

minimizes the work required of this staff and improves the fidelity of the

simulated world underlying the game. As in analysis, gaming simulations need

not be survivable. They also do not need to be especially flexible, except to the extent

that they must allow "mid-course corrections" to be made by support staff in order

to bring a gime or exercise back to its intended track or to align the model with the

thinking of the participants (for example, when they feel the model invalidates the

game). Finally, portability of gaming systems (as for analytic systoms) is

desirable, but not mandatory.

Battle management envisions the use of simulation as an embedded

decision aid to be used by a commander in making tactical decisions. This is

somewhat akin to the analytic use of simulation, but with critical realtime,

reliability, and survivability constraints added. Because immediate life-and-

death decisions are being made, outcome validity is crucial, as is interactive

responsiveness. Realism, as in the analytic case, is subordinate to

appropriateness of presentation (unlike the game parL.cipant, the commander in

the field does not need the simulation to convince him of the reality of the

situation). Of all the possible uses of simulation, this is by far the most critical and

(so far) speculative. Note that this use may itself be simulated in a game; in this

case, there would be two distinct uses of simulation going on in parallel: the game

simulation proý,iding the simulated situation and the commander's simulation

used as an embedded decision aid. Here the stringency of the constraints on the

buLL! o.ianiagernent simulation (particularly survivability) would not iJrally hP.

relaxed. On the other hand, gaming might be used as an embedded decision aid

.16-

(i.e., as a "lookahead" to project possible futures), in which case the gaming

simulation would inherit the stringency constraints of battle management.

Having produced this characterization of the uses of simulation, the KBSim

project has targeted the analytic end of the spectrum. That is, we are concerned

with issues of validity, interactive responsiveness, comprehensibility, flexibility,

and reusability. In particular, we are not (initially) addressing issues of

performance or reliability, except where they are necessary to achieve our goals

(for example, our work on sensitivity analysis has focused on performance issues

since they pose fundamental problems in this area). While we recognize the

significance of performance in simulation, we feel that it is important to avoid

introducing performance constraints too early in the process of exploring new

techniques.

In light of the above discussion of what users require of simulation

environments, KBSim can only attempt to address a small subset of the most

important issues. Like a "go" player who selectively places stones at the most

strategic points in order to secure the desired territory, we have focused on what we

feel are critical tasks that provide the greatest leverage in advancing the state of

the art of simulation. These tasks have been chosen on the basis of both their

inherent importance and our own research strengkhs and organ Ational context.

They are discussed in detail in the following sections.

- 17 -

IV. THE NEEDS OF SIMULATION BUILDERS AND USERS

Simulation models are typically substantial pieces of computer software. 2

As with any software, they can be characterized by the needs and constraints of two

distinct (though possibly overlapping) groups of people: their builders and their

users. Simulation builders and designers are a combination of modelers and

(somewhat less frequently) computer scientists attempting to represent abstract

models as concrete computer programs. Simulation users are analysts, students,

and decisionmakers attempting to gain insight into some aspect of the real world

by using a model, presumably because using the reality itself for this purpose

would be impossible, unsafe, unaffordable, or at least inconvenient. Traditional

simulation technology suffers many serious limitations from the points of view of

both of these groups. Recent advances in software engineering for building

simulations, as discussed above, have addressed some of these limitations, but not

others. This section discusses the major problems experienced by simulation

builders and users in order to motivate the research undertaken by the KBSim

project.

Simulation builders require tools for defining new models while taking

advantage of existing ones (i.e., reusing old models). Ideally, they would like to

be able to validate their models, either against reality or (at least) against a

consensus of experts. In the absexce of true validation (which can be very difficult

in domains like military simulation), model builders must settle for tools that

allow making their models comprehensible, credible, and internally consistent.

They also require computationually feasible ways of performing sensitivity

analysis to verify the stability of a model with respect to its parameters and

identify which parameter values must be determined with critical precision.

In most cases, a modeling effort is undertaken to explore or reproduce some

relatively small part of a domain, which we refer to as the "model of interest."

2While we recognize that simulation does not logically imply the use of a
compi.itr, w. fnci.; on this case since most practical applications of simulation

involve significant computation.

-18-

This is typically embedded in a larger world model, which supplies the necessary

environment for the model of interest, but is not itself of particular interest to the

modeling effort; we refer to this as the "embedding model." For example, a model

of electromagnetic propagation might be required to study communication patterns

in a command and control setting; here, the communications model might be the

model of interest while the propagation model would be the embedding model. The

embedding model is itself contained in a simulation environment that allows

running the model, displaying re•sults, etc. These relationships are illustrated in

Figure 2.

From the viewpoint of both the model builder and the model user, the work

and code required to prov'de the embedding model and the simulation

environment are mere overhead and distraction. The mechanisms required to

provide anything other than the model of interest are "artifacts" of the modeling

technology in that they complicate and obscure the code that implements the model

of interest. (Note that this quality of being "artifactual" is relative: Something

that may be part of the model of interest in one case may be an artifact of the

embedding model or even the simulation environment in another case.) One of

Fig. 2-Model of int.erest

-19.

the simulation builder's primary goals, therefore, can be viewed as the

elimination of such artifacts. Even though it may not be logically possible to

eliminate the embedding model and the simulation environment, their

implementation should be made invisible to the greatest degree possible. This

implies that the simulation environment must provide mechanisms for hiding

these artifactual aspects of the simulation. Similarly, graphic display, user

interaction, planning mechanisms, etc., must be provided transparently by the

simulation environment since they are required by most simulation projects.

For example, a fundamental notion of "autonomy" is missing from most

simulations. Objects in a discrete-state simulation interact with each other

essentially by reacting to stimuli (generally represented by messages in the object-

oriented paradigm). This does not capture the idea of an object that moves of its

own accord: To simulate this requires crude circumlocution in most simulation

environments (e.g., having a scheduler ask each movable object to move each time

the simulation clock advances). Similarly, interaction events like collisions,

intersections, and detection by sensors are difficult to simulate without additional

artifactual devices.

As more and more complex models are developed, it becomes increasingly

important to allow model builders to "stand on the shoulders of giants" by building

on previous, existing models. This is particularly appropriate in the case of

embedding models, which are often similar across many simulation projects; for

example, the basic physics of movement, electromagnetic propagation, weather,

etc., are phenomena that are required in many embedding models. Simulation

languages and environments must provide better mechanisms for defining and

storing models in ways that allow sharing and reusing them in later efforts.

Simulation builders also need to be able to define, examine, and modify

entities in their moiels and relationships among these entities. Although object-

oriented simulation languages provide a natural way of representing certain

kinds of real world objects (such as tanks and airplanes), there are other kinds of

entities and phenomena that stubbornly resist most current attempts at

representation. For example, entities like terrain and weather, phenomena like

human decisionmaking, and "soft" factors like "initiative" are difficult to

represent in current paradigms.

- 20 -

Many of the needs of simulation users are analogous to those of simulation

builders, particularly when the builder of a simulation is also its user or when

users continue to develop and modify a simulation after it is built. Users need to be

able to develop confidence in the validity of a model an-i comprehend what it is

doing and why. This requires that a simulation be able to explain its behavior in

meaningful terms (for example, by showing chains of causality) and that users be

able to view the attributes of entities and the relationships among entities in the

naodel in appropriate ways. Users also need to be able to define new relationships

among entities in order to define their own "views" of a model, and they need to be

able to specify associated inferences to be performed across these relationships.

Though most existing object-oriented simulation environments provide class-

subclass ("IS-A") relations with the ability to infer attributes and behaviors via

inheritance, other relationships are usually unsupported. For example, a user

might want to define a connectivity relation-such as that between entities that are

in communication with one another-along with a transitive closure inference to

determine which entities can receive messages from which others through the

communication net. Implementing such relations typically requires extensive

programming.

Users also need to be able to explore alternative assumptions and run
"excursions" to test the model and to apply it for different purposes. Similarly,

users often need to view the behavior of a model at different levels of aggregation

for different purposes. While this can be done after the fact (by "abstracting" the

results of a disaggregated model). it is preferable to allow interaction with the

model at various levels of aggregation while it is running, which requires that the

model be able to change its level of aggregation dynamically. Dynamic

aggregation (sometimes referred to as "variable resolution") would also allow the

user to focus attention on some aspect or area of a simulation or to run "broad

brush" (highly aggregated) simulations to identify interesting cases that can later

be rerun in more detail (disaggregated).

Users need to be able to ask a broad range of questions of a model, including

not only "What if, . . ?" questions but also explanatory questions, questions about

the causality of events, questions about the goals and plans of entities, definitive

questions about which things can ever happen, and go&l-dirort.pd q1ueI•tionr about

how to achieve certain objectives. They also need to be able to analyze results,

- 21 -

analyze the sensitivity of results to variations in parameters, and analyze the

stability of the conclusions reached by the model.

To summarize, current simulations and simulation environments are

limited in their power, comprehensibility, interactive responsiveness, and ability

to answer questions beyond "What if... ?" Both simulation builders and users

need environments that provide richer representations for real-world entities and

the relationships among them, greater transparency for greater credibility, more

intimate interaction for controlling and modifying simulations, and automated

inferencing techniques to answer a range of questions beyond the capabilities of

traditional simulation.

- 22 -

V. KBSIM GOALS AND APPROACH

The purpose of the KBSim project is to perform research toward the

development of the next generation of military simulation environments. This

requires making simulations easier to build, understand, believe, use, and reuse.

These goals are in harmony with several other efforts at RAND, including

the Intelligent Database project (IDB), the Simulation Technology Transfer

project, and exploratory work in new representations for terrain, weather, and

other distributed phenomena. The ultimate production of a next-generation

simulation environment will involve the integration of these efforts. KBSim has

therefore focused on the following specific (overlapping) goals:

"* Comprehensibility / believability

"* Extended modeling power

"* Intelligent exploration and explanation

"* Model development aids

The quest for comprehensibility and believability involves such

fundamental issues as rethinking the discrete-state paradigm and specifying the

behavior of simulation entities declaratively rather than procedurally. It involves

representing entities and relationships among entities, events, and causality in

more natural ways; eliminating or hiding artifacts (both those of the simulation

environment and those of embedding models); and developing new techniques for

tracing the behavior of simulations and performing sensitivity analysis.

Extending the modeling power of simulations involves developing new

representations for real-world entities that have traditionally proven hard to

capture in simulation, developing new forms of inference for answering new

kinds of questions, and providing "inferential support" for relations among

entities in a model.

Intelligent exploration and explanation is our name for the need to allow

users to explore simulations by stopping, backing up, making changes, and trying

excursions, along with the ability to trace how or why a simulation behaves the way

it does. This has implications for the way a simulation is structured (to allow its

- 23 -

being stopped and backed up) and for the interface used to control and interrogate

the model.

New model development aids include developing simulation language

constructs that highlight the model of interest in a simulation by minimizing

artifacts; integrating object-oriented simulation languages with object-oriented

databases to store "permanent" simulation entities and behaviors; and providing

new interface techniques for specifying relationships and defining behaviors of

entities.

To achieve these goals, we have adopted an approach that involves:

9 Developing new knowledge-based techniques to increase the
power, comprehensibility, and flexibility of simulations

0 Developing advanced user interface techniques for improved
interaction and the elimination of artifacts

* Integrating these in an extended object-oriented framework

Within the limits of our resources, we are attempting to redefine and extend
the object-oriented paradigm, rethink some of the most basic assumptions of

discrete-state simulation, integrate this with the best ideas from expert systems

and logic programming, and embed the result in a highly interactive

environment. (Note that we are specifically not targeting a number of other

important research topics, such as modeling stochastic phenomena and improving

simulation performance.)

In order to reduce risk, we have adopted the approach of prototyping key

techniques separately, developing "sublanguages" or stand-alone environments

to demonstrate the feasibility of each technique and to allow experimenting with it

unfettered by the need to integrate it prematurely with other equally experimental

techniques. Once a given technique has proved feasible in isolation, we will

integrate it with other techniques that have been similarly proven. The lessons

learned from this process are providing direction to the languagp development

effort of RAND's Simulation Technology Transfer project, which is producing a

new integrated language to support the next generation of military simulations.

Integrating these new techniques in a testbed simulation environment

involves combining many new capabilities. The target external architecture of

- 24 -

this environment is shown in Figure 3. The combined model-building

environment and model-execution facility (center ellipse) emphasizes the fact that

model development and use are an integrated process, though the former logically

results in a model to be executed by the latter. Similarly, the model builder and

Mode Answers

Model-specific Validation i ons
knowledge Questions
and codev

M eolRNewuobjectss

and events

Processed

data

External Raw data
databases

)
a

Fig. 3 -Eventual external architecture of KBSirn

- 25 -

user may be a single person, but logically the model builder supplies knowledge

and code (dataflows are shown in italics) and interacts with the model building

environment to validate the model being constructed, whereas the user asks

questions of the model execution facility and (ideally) gets answers. The object-

oriented database (to be supplied by the IDB project) will serve as a permanent

repository for submodels, object and event definitions, and cases stored by the user

for later analysis.

The internal layered architecture is shown in Figure 4.

Sensitivity Exploration Reasoning Variable
analysis and and resolution

explanation simulation (aggregation)

Resulting
capabilities

Sensitivity [Gaics Reasoning engine i Extended objects
analysis and with

environment simulator multiple relations
(EOMR)

XROSSL I The DMOD Multiple relations Extended s
sublanguage

KBSIm
facilities

~~SS ~projectJ

SUN + GKS graphics + SunView

Not implemented yet

Fig. 4-KBSim internal layered architecture

- 26 -

The lowest layer represents facilities that already exist or that are expected

to be provided by other projects at RAND. The middle layer ("KBSim facilities")

represents those that are being implemented by the KBSim project itself in order to

provide the "resulting capabilities" shown in the top layer. The top layer

capabilities are all closely interrelated; they are shown separately as a graphic

convention. Arrows pointing upward indicate direct support from underlying

facilities. In the case of the Intelligent Database and the proposed Advanced

Geographic Environment (AGE) projects, the upward arrows indicate that we

expect to develop solutions with the help of input from these projects; in addition, we

will use tools or code developed by these projects if appropriate. The arrows

pointing downward to the Intelligent Database project indicate that we eventually

expect to store objects and relations in the database at runtime.

In the middle layer, the simulator facility-which is responsible for

running actual simulations-is combined with the reasoning engine: These are

inseparable in our view of simulation and reasoning as integrated aspects of

modeling. This joint facility produces a combination of reasoning and simulation

capabilities for implementing models. The exploration and explanation

capabilities provide the enhanced interaction and control that allow the user to

manipulate and query the model during a simulation. We show sensitivity analysis

and variable resolution (aggregation) as separate capabilities to emphasize the fact

that they add new dimensions to traditional simulation.

To date, KBSim has implemented initial, stand-alone versions of the

facilities shown in Figure 4. The DMOD sublanguage (implemented in Quintus

Prolog) has been used to develop an integrated reasoning and simulation facility,

as well as initial exploration and explanation facilities. The XROSS sublanguage

(initially implemented in Franz LISP and currently being ported to Common

LISP) has been used to develop the graphics-delta display technique and variable

aggregation. An initial sensitivity analysis facility has been implemented as a

stand-alone computational environment in Franz LISP. To produce the target

architecture shown, further research is required (in coordination with the IDB

project) to define multiple relations and to design appropriate runtime interactions

between the simulation environment and the object-oriented database. Additional

rccarch . alhso required to explore the relationship between object and event. vipws

-27.

(discussed above) in order to elaborate the multi-view paradigm. These results

will feed into the design of the new simulation language discussed below.

The KBSim architecture shown here does not map directly onto the

modeling contexts shown iti Figure 2 (Section IV) above. Though it may appear

that such a mapping would be desirable in that it would facilitate the elimination of

artifacts, this is prevented by the relativity of what constitutes a modeling artifact.

The architecture must not presume to know what the model builder and user will

consider to be the model of interest, since this will vary. The only artifacts that can

be eliminated at the architectural level are those that belong to the simulation

environment itself (such as explicit unscheduling and demand update, discussed

below). Beyond this, the most that an architecture can do is provide the capabilities

needed to implement a wide range of models of interest and embedding world

models. The model builder must use the modeling constructs provided by the

architecture to encapsulate appropriate aspects of the embedding model in order to

eliminate modeling artifacts.

As noted above, we are developing several of our facilities in coordination

with other projects at RAND. Figure 5 summarizes the relationship between

KBSim and these other projects (as indicated at the bottom of the figure, thin lines

labeled in italics denote the flow of ideas and solutions between projects, whereas

thick lines denote the shared use of data or code).

In particular, our ideas on multiple relations are being coordinated with the

IDB project, our ideas on extended objects are being coordinated with the proposed

AGE project, and our ideas on aggregation will be further developed in

coordination with both of these projects. Ultimately, we expect to use the Intelligent

Database facility for storing and retrieving permanent definitions of submodels,

objects, events, and cases, and we may be able to use aggregated terrain data

derived from the AGE project. We also eventually hope to be able to use the results

of the CPAS (Concurrent Processing for Advanced Simulation) project to run our

simulation environment in a distributed manner for improved performance.

In addition, the New Simulation Language project will transfer our

ideas-as they yield solutions-into a new, general-purpose simulation language,

allowing modelers to apply our ideas to build their models without the need to use

our research develnpmont. environment. This will involve a reimplementation of

the KBSim environment that will improve efficiency and integration and support

- 28 -

CPAS Distributed
(Concurrent simulation
Processing environment all ideas Now

for KBSi.- m simulationAdvanced language
Simulation) a

Store/retrieve Aggregated
permanent Relations, terrain data

object and event aggregation

definitions

Extended objects,
aggregation

IDB AGE
(Intelligent Database) (Advanced Geographic

"Environment)

Ideas/solutions Data/code

Fig. 5-KBSim and other projects at RAND

the multi-view paradigm that we are currently developing in DMOD. KBSim will

reimplement its own facilities in this new language as it evolves, yielding the

eventual internal architecture shown in Figure 6.

At the present time, many of the facilities discussed above exist in stand-

alone form; their full integration will produce a new environment for powerf.-,

comprehensible, and reusable modeling by means of knowledge-based

simulation.

- 29 -

Sensitivity Exploration Reasoning Variable
analysis and and resolution

Resltngexplanation simulation (aggregation)
Resulting

capabilities

Sensitivity Reasoning engine Extended objects

analysis] and with

environment simulator multiple relations
(EOMR)

L_ i Simulation layer

Object layer Multiple relatio~ns] Extended objects

KBSirn
facilities

SIDB i Terrain

New simulation ianguage project

Fig. 6-Eventual internal architecture of KBSim

- 30 -

VI. KBSIM RESEARCH PROGRESS

OVERVIEW

Given the broad objectives of our research, we spent some initial effort

defining specific tasks that we felt would have the greatest return and would make

the best use of our research skills and interests. We defined the following six

tasks:

"* Reasoning in simulation

"* Multiple relations (and extended objects)

"* Highly interactive interfaces

"* Sensitivit'o ano.ysis

"* Variatior, o: the aggregation level of a model

"* Modeling of soft concepts

Though there is some overlap among these tasks (for example between

reasoning and sensitivity analysis and between multiple relations and

aggregation), distinguishing them in this way allows us to explore related issues

separately, while minimizing the risk of premature integration, as discussed

above. In reviewing the literature and interacting with other researchers, we have

become convinced that these tasks are central to the production of a next-generation

simulation capability. Furthermore, we feel they define a sufficient set of

capabilities to produce a meaningful prototype simulation environment; the

synergy among them will result in capabilities that provide decisive improvement

over available simulation environments. These tasks are derived from our goals

as indicated in Figure 7.

The following subsections summarize our progress on each of the above

tasks. In addition, we have devoted some effort to examining alternative

scenarios for use in demonstrations; this has led to the definition of a river

crossing scenario, which is also discussed below.

- 31 -

Comprehensibility/ believability

Extended modeling power

Intelligent exploration and explanation

Model development aids

Reasoning X X X X

Multiple relations X X X X

Interactive interfaces X X X

Sensitivity analysis X X X X

Variable aggregation X X X X

Soft concepts X X

Fig. 7-KBSim tasks and goals

REASONING IN SIMULATION

As discussed above, traditional simulations are severely limited in the

types of questions they can answer. Users typically specify initial states of the

simulated world and then run the simulation to see what happens, effectively

asking questions of the form "What (happens) if... ?" However, it is widely

recognized (Davis, Rosenschein, and Shapiro, 1982; Erickson, 1985) that many

other kir.ds of questions are of at least as much importance in many situations.

These are questions that might be asked of a human expert in the domain that is

being modeled. They include why questions ('Why did X happen?" or "Why did

object X take action Z?"), why not questions ("Why didn't X happen?"), when

questions ("Under what conditions will event Y happen?"), how questions ("How

can result R be achieved?"), ever/never questions ("Can X ever collide with Y?"),

-32 -

and optimization or goal-directed questions ("What is the highest value Z will ever

reachT' or "What initial conditions will produce the highest value of Z?").

Similarly, it is important to be able to ask questions about the simulation

state ("At what points in time did condition X holdT') and about explicit causality

("What events can cause event X?", "What events are caused by event Y", or

"Why did event Z not occur?"). Finally, there are questions about the model itself

("What constraints govern the occurrence of event X?" or "Under what

circumstances can plan Z fail to achieve its purpose?"). We refer to the capabilities

needed to answer such questions as Beyond "What if... ?"

For example, the following questions might be asked of an air penef -ation

model:

What caused the penetrator to change its flight plan?
(Why did an event occur?)

Why did the radar not detect the penetrator?
(Why did an event not occur?)

What was the fighter doing when the penetrator crossed the border?
(Treating simulation state as a database and querying it.)

What factors determine whether a radar detects a penetrator?
(Analysis of conditions in causality rules.)

What is the shortest runway a penetrator can land on?
(Analysis of the knowledge associated with a particular object.)

What does a radar do after it has detected a penetrator?
(What event is caused by a given event?)

What can make a penetrator alter its flight plan?
(Which events can cause a given event?)

Can a fighter-base command fighters from another base?
(Analysis of conditions in causality rules.)

If a penetrator has been detected will it necessarily be intercepted?
(Analysis of conditions in causality rules.)

How many times has a given penetrator been detected?
(Analysis of history.)

The inability of current discrete-state simulation systems to answer such

questions derives from basic limitations in their representational and inferential

capabilities. Representational limits include the difficulty of modeling goals,

intentions, plans, beliefs, and constraints. To the extent that these can be

- 33 -

represented at all in most systems, they are usually encoded implicitly in

behaviors (i.e., specified procedurally) and are therefore not amenable to

inference.

The kinds of inference and explanation techniques that have been applied

in expert systems provide one way of extending the capabilities of simulation

systems. However, simulation imposes additional requirements on these

techniques: It requires the ability to represent temporal and spatial constraints

and relationships as part of behavior so that inferences can be made on the basis of

this information. For example, a given type of airplane may only be suitable for

day fighting, and so its behavior in a simulation may be constrained by time of

day. Similarly, two units in a simulation may communicate using different

media depending on how close they are to each other (spatial constraint), and the

choice of medium may determine the delay inherent in their communication

(temporal constraint).

Solving these problems requires an ability to reason not only with

simulation output, but also with the model itself. This implies that the building

blocks of thp model must be small and well-defined, and that there must be a

powerful deductive mechanism to manipulate them. This requires formalizing

precise definitions of certain primitive notions in dynamic systems, including

time-varying attributes, events, and causality (i.e., scheduling and unscheduling

of events). Our approach has been to use logic for this formalization: We began

with a reimplementation of a subset of ROSS in Prolog and subsequently developed

a new sublanguage ("DMOD"), implemented in Quintus Prolog.

The main concept in DMOD is an event. An event is said to occur when an

"interesting" condition is satisfied in the world. If the sequence of events in the

simulation is given, the state of the simulation at any time can be computed. A

model therefore consists of two sets of rules:

(a) a set of "causality" rules specifying what other events occur, given

that a particular event has occurred (and the sequence of events
leading up to it);

(b) a set of "value" rules specifying how the value of a parameter

changes after an event, given its value before the event occurred.

The main object being computed in DMOD is the history, or the sequence of

events which occur. History is represented as an explicit list of events that have

- 34-

occurred, from which the value rules allow computing the simulation state at any

point, on demand. Since many of the computable attributes in a simulation are

required only occasionally in any given computation, this "demand processing"

(sometimes called "lazy evaluation") is quite efficient; in cases where each

computed value of an attribute is accessed relatively often, caching can be used to

avoid unnecessary recomputation.

Moreover, histories can be accessed at any point in the simulation. (In

contrast, ROSS computes state, from which histories cannot be inferred; objects that

need to refer to the past must save past state for themselves, causing a proliferation

of attributes.) Since events represent meaningful changes in behavior, histories

are a compact representation of behavior, analogous to run-length encoding in

data transmission. In addition, chains of causality can easily be inferred from

history. Given an event E, it is possible to trace not only what events E led to, but

also what events led up to it. This is both a form of explanation and a valuable

debugging tool.

DMOD is a formalization of discrete-event simulation, which is something

of a departure from the object-oriented approach. However, the declarative nature

of DMOD allows a given model to be viewed in different ways for different

purposes; for example, object-oriented views can be used wherever they are

appropriate, as illustrated in Figure 8. The object view encapsulates those aspects

of the model that adhere to objects (i.e., their states and behaviors, their relations to

other objects, and the fact that they participate in certain events). The event view

encapsulates those aspects of the model that adhere to events (i.e., which objects -nd

attributes they affect, which other events they depend on, and which other events

they cause). It should be possible for the designer or user of a model to use

whichever view is most appropriate for a given purpose, deriving the information

necessary to update the model and produce the complementary view on demand.

This ability to derive views (as well as the underlying model itself) from other

views and the full integration of object and event views deserve further research.

Discrete-event simulation is based on the observation that to compute the

state of a system at any point in time, it is riot necessary to keep a record of its state

at regular intervals of time. Instead, it is sufficient to keep a record of the events

that occur in the system; from these and the initial state, the state of the system can

be computed at any point in time.

- 35 -

OBJECT 0: EVENT E:

"* Has attributes and behaviors * Involves/affects objects 01, 02,....

"* Is related to objects 01, 02, ... Depends on events E-l, E-2,

"* Participates in events El, E2, ... * Causes events El, E2,

Object view Event view

Model

Fig. 8-Multiple views of a model

Models (or programs) in DMOD are statements of logic, so they have a

declarative interpretation. However, they can also be executed as Prolog

programs, thereby capturing the dynamic aspects of a discrete-event simulation.

DMOD currently allows answering certain types of Beyond "What if... ?"

questions in a simple air-land model. We are currently expanding this model

and are also refining DMOD itself to enable us to answer other, more complex

types of questions.

DMOD can currently answer certain special cases of goal-oriented

questions of the form "How can X get from A to B?" For example, given an event E

and a history, it is possible to trace causality chains backward and forward from

E. That is, DMOD can compute what sequence of events led to E, and what

sequence of events E led to. Similarly, DMOD's causality rules can be used to

dctcrminc which events can lead to (cause) a given event, as well as which events

- 36 -

follow a given event. To extend this capability, we envibion allowing the user to

interact with the goal-directed search to give it "advice" about which paths to

search. The general goal-directed simulation problem is at least as difficult as the

general planning problem in AI (which remains unsolved), and goal-directed

simulation may even be harder due to the presence of time; nevertheless, the

formalized approach of DMOD provides a good starting point for attacking this

problem, at least in its simpler cases.

In addition, DMOD solves two major problems that plague traditional

discrete-state simulations. The first is how to simulate decisionmaking that

requires reference to past states and events. For examvle, if a radar detects more

than ten penetrators in a span of five minutes, it infers a major attack and informs

the central command, otherwise it simply informs its fighter-bases. In most

discrete-event simulations, the state is destructively updated at event boundaries.

Consequently, relevant past states and events must be explicitly remembered, i.e.,

made part of the current state. This approach can very quickly increase the size of

the current state, making it extremely unwieldy.

In DMOD the main object being computed is not the state, but the history, or

the sequence of events that occur. History is a "first-class" object; that is, it has the

status of a real data object that can be passed to procedures participating in the

simulation. Since the state of the system at any point in time can be computed on

demand from the history and the initial state, the problem of accessing past states

or events is easily solved.

The second problem is how to ensure that events are consistently

unscheduled. For example, if a penetrator takes off from an air base and flies

toward a radar, most discrete-event simulations would schedule an event for the

detection of the penetrator by the radar at some time in the future. If, however, the

penetrator crashes or is diverted or shot down between the current time and this

future time, the detection event must not be allowed to occur. To ensure this, the

model requires explicit code to unschedule this event. As models grow larger, it

becomes increasingly difficult to ensure that such unscheduling is performed

consistently. In languages like ROSS, unscheduling is an artifact that must be

handled explicitly by the programmer and is a source of numerous bugs.

Iii DMOD the notion of unseheduling is absent. Instead, when an event i.;

scheduled, a condition is associated with it. When this becomes the first event in

- 37-

the event queue, the condition is evaluated in the light of the history accumulated so

far. If the result is true, the event will occur, otherwise it is discarded. As shown

below, this is done declaratively, so the programmer need not even be aware of the

procedural notion of unscheduling.

We present examples of causality and value rules below (from a simple air

penetration model) and show how they are used to perform simulation and how a

model built with this formalism can answer questions beyond "What if. .. ?" The

examples are shown in (nearly) their true Prolog form for legitimacy. This raw

DMOD code would be difficult for a modeler to comprehend without a firm grasp of

Prolog. However, it is straightforward to define a high-level modeling language

that can be compiled easily into DMOD; the appropriate constructs for such a

language will become apparent as we gain experience with DMOD. The code

shown here is not intended to illustrate the ultimate readability of the approach but

rather to show that it can be implemented straightforwardly in Prolog.

For readers who are unfamiliar with Prolog, note that variables always

begin with capital letters, whereas all other terms are either the names of rules (or

procedures) or are uninterpreted literals; for example, the data objectpen(X) is

used to denote a penetrator aircraft whose name will be bound to the variable X.

(An underscore appearing in place of a variable name, as in pen(j, represents an

unnamed variable that need not be referred to again.) The notation "IX I Y]"

denotes a list whose first element is "X" and whose tail is "Y" (corresponding

respectively to the LISP "car" and "cdr" of a list). The distinction between a
"rule" and a "procedure" in DMOD-as in Prolog-is purely one of

interpretation: Both bind their uninstantiated ("output") arguments and return

success or failure.

The general form of a causality rule (presented in "then-if" form) is:

occurs(EventE, HistoryUptoE, EvertF, HistoryUptoF) if
EventE = <some event>,

EventF = <some future event>,

<computation of EventF free of references to HistoryUptoF>

provided(LventE, Ilistoryl~ptoE, EventF, HistoryUptoF).

where EventE is an event that has occurred; HistoryUptoE is the history of evenLs up

to (but not including) EventE; EventF is a variable representing a future event

- 38 -

caused by EventE; and HistoryUptoF is a variable representing the history up to

(but not including) EventF. (All events have time stamps; histories are lists of

events sorted in decreasing order on their time stamps.)

Note that HistoryUptoF includes both EventE and HistoryUptoE. The

computation of EventF does not refer to HistoryUptoF; it is based purely on

information about EventE and HistoryUptoE. The condition provided(EventE,

HistoryUptoE, EventF, HistoryUptoF) is defined by additional rules; it specifies a

condition on the time period between EventE and EventF.

An example of a causality rule is:

occurs(EventE, HistoryUptoE, EventF, HistoryUptoF) if

EventE = flies(pen(X), [Px,Py], TimeT),

EventF = detects(pen(X), radar(R), FutureTime),

someRadar(R),

entersRange(pen(X), [Px,Py], radar(R), FutureTime,

[EventE I HistoryUptoE]),

provided(EventE, HistoryUptoE, EventF, HistoryUptoF).

This rule says that EventE causes EventF under suitable conditions. In

particular, if EventE consists of penetrator X beginning to fly toward position

[Px,Py] at TimeT (given the sequence of events that has occurred up to EventE,

denoted HistoryUptoE), then (at some FutureTime) EventF will occur, consisting of

radar R detecting penetrator X (under suitable conditions, as discussed below).

The procedure entersRange computes the time FutureTime at which the penetrator's

flight path will intersect the radar's coverage, which is the time at which EventF

will occur.

Of course, if the penetrator is destroyed or diverted from its path between

TimeT and FutureTime, or if the radar is jammed at FutureTime, then EventF will

not occur. These conditions are specified by the "condition predicate" provided

(appearing as the final argument in the left-hand side of the above rule), whose

definition is:

- 39 -

provided(EventE, HistoryUptoE, EventF, HistoryUptoF) if

EventE = flies(pen(X), [Px,Py], TimeT),

EventF = detects(pen(X), radar(R), FutureTime),

not occursAfter(EventE, flies(pen(X), _, J, HistoryUptoF),

not occursAfter(EventE, destroys(-, pen(X), J, HistoryUptoF).

This condition predicate is true if all of its conditions are true, namely if

EventE and EventF are the appropriate events, and if penetrator X does not fly

elsewhere and is not destroyed between EventE and EventF (i.e., between TimeT

and FutureTime). For example, the third condition, not occursAfter(EventE,

flies(pen(X), .., J, HistoryUptoF), says that it must not be the case that penetrator X

flies to some new (unspecified) position after EventE in the HistoryUptoF (that is,

between EventE and EuentF).

The general form of a value rule is:

value(Attribute, Object, Value, History) if <body>.

stating that the value of this Attribute of Object is Value immediately after the last

event in History has occurred, where <body> is a set of conditions for computing

Value.

An example of a value rule is:

value(velocity, pen(X), [Vx,Vy], History) if

History = [flies(pen(X), [Px,Py], TimeT) I 2,

value(position, pen(X), [Mx,My], History),

value(speed, pen(X), Speed, History),

distance(Px, Py, Mx, My, Hyp),

Vx is Speed*(Px-Mx)/Hyp,

Vy is Speed*(Py-My)/Hyp.

This rule computes a penetrator's velocity (a state parameter); it binds the

variables Vx and Vy to the x and y components of the velocity vector of some

penetrator, X. Note that History is a list of events that have occurred in reverse

chronological order, so that the most recent event is the first one on this list,

namely flies(pen(X), [Px,Py], TimeT). The rule therefore says that if this is the

most recent event in the History (i.e., the penetrator's beginning to fly toward a

-40-

destination point [Px,PyI at some TimeT), then the velocity can be calculated from

the penetrator's speed and the distance between its current position [Mx,My] and its

destination [Px,Py] (where distance is the appropriate function). The penetrator's

current position and speed are in turn computed by additional value rules for these

attributes; for example, invoking value(speed, pen(X), Speed, History) binds the

variable Speed to the current value of the speed attribute of penetrator X in the given

History. Initial values for attributes can be specified by separate value rules; for

example, the InitialSpeed of penetrator X after some InitialEvent could be specified

by the rule value(speed, pen(X), InitialSpeed, [InitialEvent]).

For each event that does not change the value of a given attribute, it is

conceptually necessary to provide a rule stating that the value of the attribute is

unchanged by the event; this is an instance of the so-called "frame problem"

(McCarthy and Hayes, 1969). However, this can be accomplished by a single

default rule, stating that attributes never change except in the cases specified by

their value rules.

Simulation in DMOD consists simply of computing the sequence of events

that follow an initial event. To begin a simulation, a list of one or more events is

supplied as an initial EventQ (written as "[InitialEventl, ..., InitialEventN]")

along with a null initial History (written as "H["):

simulate([], [InitialEventl, ..., InitialEventN], FinalHistory).

There is one additional subtlety which must be considered: In general,

causality rules contain provided clauses which cannot be evaluated until the entire

history up to the future (caused) event is known. To handle this, the rules shown

above are transformed slightly, and the actual event queue is made to consist of a

list of pairs of events and conditions of the form:

cond(FventF, provided(EventE, HistoryUptoE, EventF, HistoryUptoF))

which are sorted in increasing time order so that the next event in the queue is the

next one that may occur.

The simulate procedure, which performs simulation, consists of three rules,

each of which will be described in turn.

- 41 -

The first simulation rule is:

simulate(Hi story, EventQ, FinalHistory) if

EventQ = [1,

Fina]History =History.

This rule says that when the event queue is empty, the Finalfiistor~y is just the

current History of the system.

simulate(HistoryUptoF,

[cond(EventF, ConditionF) I RmdrEventQ], FinalHistory) if

isTrue(ClonditionF, HistoryUptoF),

bag(cond(EventG, Cond),

HistoryUptoG A

occurs(EventF, HistoryUptoF, EventG, HistoryUptoG, Cond),

EventsCausedByF),

sortEvents(EventsCausedByF, FutureEvents),

merge(FutureEvents, RmdrEventQ, NewEventQ),

simulate(IIEventF I HistoryUptok], NewEventQ, FinalHistory).

Thiis second rule says that the first item in the event queue is a conditional

EventF with ConditionF specified by cond(EventF, ConditionF). If ConditionF is

true, then find the collection of all events which it may cause. The procedure bag

produces a list, Events CausedByF, which is the collection of events caused by

EventF under suitable conditions, i.e., the collection of events such that for each

event Et'entG with the condition con d(EventG, Cond) there exists some

HistoryUptoG in which EventG follows EventF. The resulting list of events

(Events Ca usedByIF) is then sorted in increasing time order and merged with the

remainder of the events in the event queue, producing a NewEventQ. Finally,

EventF is added to the History UptoF (indicating that it has been "performed"), and

simulationi continues using this new history and the new event queue. For

readability, ConditionF is tested by the auxiliary rule:

isl~rue(provided(EventE,Hi storyUptoE,EventF,H4i-storyUptoF),

Hi storyUptoF)
if provided(EventE, HistoryUptoE, EventF, HistoryUptoF).

- 42 -

The final simulation raile is:

simulate(HistoryUptoF, [cond(EventF, Cond) I RmdrEventQ],
FinalHistory) if

not(isTrue(ConditionF, HistoryUptoF)),

simulate(HistoryUptoF, RmdrEventQ, FinalHistory).

This says that if ConditionF associated with EventF does not hold, then

EventF should be discarded and the simulation should be continued using the

current history and the remainder of the event queue.

Note that the sorting and merging of events into the NewEventQ in the above

rule produces a default form of "conflict resolution" among simultaneous events.

If two such events are mutually dependent, then the order in which they occur can

be critical (for example, if the occurrence of one precludes the occurrence of the

other). In such cases, it may be desirable to perform more intelligent conflict

resolution, in which simultaneous events are performed in an order derived from

the semantics of their interrelationships. Intelligent conflict resolution of this

kind can be implemented straightforwardly using the DMOD event formalism,

since the semantics of the interrelationships between events is explicit in the

causality rules and their associated condition predicates. This is in contrast to

strict object-oriented formalisms (such as ROSS), where analyzing the semantics

of the interrelationships between events in the event queue is all but impossible.

Techniques for analyzing a model built using this formalism are

straightforward and powerful. The simplest forms of analysis consist of tracing

event histories and examining attribute values at any point in time. Events can be

read as relations, where the relation name (verb) relates the first argument to the

remainder of the arguments; for example, discovers(pen(1), tank(2). 0.9) can be

read as "penetrator-1 discovers tank-2 at time 0.9," while informs(radar(I), ftb(1),

pn(1), 4.7) can be read as "radar-1 informs fighter-base-1 about penetrator-1 at

time 4.7." In all cases, the final argument is the time at which the event occurred.

For example, a subsequence of the events produced during a simulation

might be:

- 43 -

fl ies(pen(1),[-1 00,1001,0.1) ; Penetrator-I flies toward [4 00,100].

flie8(pen(2),[200,01,0.1) ; Penetrator-2 flies toward [200,01.

discovers(pen(l),tank(2\,0.9) ; Penetrator-1 discovers tank-2, and

detcts(pen(1),radar(1),4.7) is detected by radar-i.

inforns(radar(1),ftb(i),pen(1),4.7) ; Radar-1 informs fighter-base-I,

scrambles(ftb(1),ftr(1),pen(1),4.7) which scrambles fighter-1.

engages(ftr(1),pen(1),[I 13.3,0.0],5.8) ; Fighter-i engages penetrator-1,

destroys(ftr(1),pen(1),5.8) ; destroys it, and

returnToBase(ftr(1),6.3) ; returns to fighter-base-1.

Given a history of events, the value of a parameter can be computed at any

point in time by a query such as valueAtTime(position, pen(2), V, 3.0), which would

bind the variable V to the value of the position attribute of penetrator-2 at time 3.0.

Similarly, object-oriented views can be generated by showing the value

rules for the attributes of a given object and the causality rules that involve the

object. For example, the query initialAttributesOf(radar(X)) might produce:

value(getsJammedAtRange, radar(X), 20, 1lnitialEventl)

value(jamred, radar(X) ,false, [InitialEvent])

value(jammingRecoveryDelay, radar(X), 0, [lnitialEvent])

value(radius, radar(X), 40, [InitialEvent])

Beyonri this, it is straightforward to trace chains of causality. For examnle,

query forwardCausality(flies(pen(1), 1-100,100], 0.1)) would compute the

sequence of events caused by the event flies(pen(1), [-100,1001, 0.1), which would be:

flies(pen(l),[-100,100],0.1)

di scovers(pen(1),tank(2),0.9)

detects(pe, (1),radar(1),4.7)
informs(radar(1),ftb(I),pen(1),4.'•

scramnbles(ftb(1),ftr(1),pen(1l),4.7)

engages(ftr(1),pen(1),f 113.3,0.01,5.8)

destroys(ftr(1),penU),5.8)

On the other hand, the query backwardCausality(destroys(ftr(1), pen(1),

5.8A) would produce the reverse of the above list of events.

- 44.

Certain dependencies can be traced abstractly in the model itself. For

example, the query affectedBy(velocity, pen(l), E) would bind E to successive

events that affect the velocity attribute of penetrator-1, namely, flzes(pen(1),

[Px,Pyl, T), and destroys(ftr(A), pen(1), T).

Bulding a simulation in DMOD (as illustrated by the above examples)

encourages the model builder to focus on the relationships among events and

between events and attribute values. Deiwand-update (lazy evaluation) is the

normal mode of c-mputing autonomous (as well as other) attribute values, as

discussed above. Explicit unplanning of events is unnecessary. DMOD thereby

eliminates two of the more troublesome artifacts of object-oriented simulation,

while providing a highly declarative representation that makes it straightforward

to answer questions beyond "What if... ?"

The above examples show how DMOD is being used to demonstrate

reasoning in an air-laiid scenario based on an abstraction of the SWIRL and

TWIRL simulations. The scenario includes air units (e.g., penetrators,

interceptors, radpr', fighter-bases) and ground units (e.g., tanks, artillery units,

and mechanized regiment headquarters) with communication and direct

interaction between them, A graphical interface to DMOD has been implemented,

which enables the user to see the state of the modeled system as it evolves over time.

We expect to expand this scenario incrementally as we gain experience with these

reasoning techniques. DMOD is already changing our thinking about issues of

temporal representation appropriate for military simulation and about issues of

autonomy and causality. In particular, an event-oriented view of a simulation

model has certain advantages over an object-oriented view, at least for some

purposes; for example, encapsulating all the state-changing side effects of an event

as part of the event makes it much easier to comprehend and maintain them than if

they are distributed among the objects that own the state tas they would be in a strict

object-oriented approach). We have therefore begun to think of a model as a

database that can be viewed from different perspectives for different purposes (e.g.,

event-oriented or object-oriented).

DMOD is only a first step toward the use of reasoning in simulation. Many

issues remain to be explored, including the further integration of event-oriented

and object-oriented approaches, the handling of stochastic behavior, the

implementation of more-intelligent conflict-resolution strategies, arid ways of

- 45 -

taking advice from the user when attempting to answer goal-oriented queries.

Nevertheless, we feel that the leverage already proviied by DMOD indicates that a

logic-based approach to simulation is an excellent way of answering questions that

go beyond "W'at if... ?"

MULTIPLE RELATIONS (AND EXTENDED OBJECTS)

Complex simulations require the representation of multi-dimensional

relationships among objects. For example a tank is-a kind of moving object, is-a-

part-of a particular tank battalion, may be under-the-command-of a particular
"crossing area commander," may be in-communication-with some set of other

objects, and may be near a (possibly different) set of objects. It is important for

anialysts to be able to define such relations freely, examine the state of the

simulation in terms of these relations, and modify them dynamically.

Traditional object-oriented systems-as well as most semantic nets, frame

systems, and expert system shells, with some exceptions (Carnegie Group, Inc.,

1986)-provide strong support only for the class-subclass relation (also called IS-A

and taxonomy). A corresponding inheritance mechanism is usually supplied to

maintain taxonomic relationships (serving as a specialized kind of inference),

but little or no support is provided for other kinds of relations. In fact, the IS-A

relation has been pressed into service for many inconsistent purposes (Brachman,

1983), though it is poorly suited to many of them.

Recent work in integrating relations into an object-oriented language

(Rumbaugh, 1987) appears to ignore the issue of "inferential support" for

relations. Some authors argue that the IS-A relation should be thought of as a

programming (or implementation) construct rather than a semantic modeling

construct, while other relations should be accorded inferior status (Cox, 1988). Our

own approach is that, while implementation relation3 may be important, the

primary responsibility of asy modeling environment is to provide modeling

constructs that allow representing features and phenomena of interest in the real

world in natural ways (that Rs, to allow modeling), We consider multiple relations

as alternative views of a model (analcgous to the objrct and event views discussed

above), which are necessary to provide natural ways of modeling alternative

features and phenomena. For this reason, we feel it is important to provide a true

- 46 -

multiple relation environment, in which different kinds of relations are supported

by appropriate specialized inference mechanisms.

It is also important to note that a number of real-world entities are difficult

to represent as traditional objects. For example, terrain, roads, rivers, weather,

and electromagnetic fields defy easy representation by conventional object-

oriented means. These "extended" objects or phenomena require representations

and manipulations that are different from those used for more compact objects,

either because they traverse or interpenetrate other objects (without actually being
"part" of them) or because they are best described by continuous models (such as

partial differential equations).

Though investigating these representation issues is not among our primary

research tasks, we expect to confront some of them by necessity and to incorporate

the results of research in this area by other projects at RAND. We recognize the

need to integrate these issues with those of representing multiple relations among

objects; that is, the relations we are considering must be applicable to "extended"

objects as well as more traditional ones. We refer to the combination of these ideas

as extended objects with mulhiple relations (EOMR). We believe it will be possible

to encapsulate exterided objects (however they are actually implemented) so that

they appear as ordinary objects from the perspective of the multiple relation

facility, though the inferential support mechanisms for relations on extended

objects will in general depend on the semantics-if not the implementations--of

these objects.

We have identified and characterized a number of important types of

relations in military simulations, including (among others):

class-subcla8s (trucks are a subclass of moving objects)
part-whole (a battalion is a part of a brigade)

command (a unit is commanded by a commander)

connectivity (two units are in communication with each other)
proximity (two units are near each other geographically)

We have identified inference mechanisms to support these relations by

analogy to the way inheritance supports the class-subclass relation. That is, for

each type of relation there is some special kind of inference which is appropriate to

it. In the case of a class-subclass relation, this inference is inheritance. However,

- 47 -

in the case of a part-whole relation (for example) the appropriate inference

mechanism involves distributing the values of attributes of the whole over its parts,

so that the number of troops in a brigade always equals the sum of the troops in its

battalions (this special case is discussed under aggregation below). In the case of a

connectivity relation, on the other hand, the appropriate "inferential support"

involves some form of transitivity sothat if A is in communication with B and B is

in communication with C, then A is (at least indirectly) in communication with C.

This is only the tip of the multiple relation iceberg: Once we have

implemented multiple relations and multiple inference mechanisms to support

them, we hope to be in a position to take a more general approach to relations. This

should involve defining a framework of general characteristics (Le.,
"attributes") of relations to allow defining relations in terms of these

characteristics (Carnegie Group, Inc., 1986). For example, a relation can be

defined in terms of whether it is one-to-one, one-to-many, many-to-many, onto,

transitive, associative, reflexive, invertible, etc. This would allow users to define

relations simply by indicating their appropriate attributes; appropriate inferential

support mechanisms could then be generated automatically, at least in feasible

cases.

Though these issues are important, we have temporarily suspended our

work on multiple relations (due to resource limitations) pending the results of

work currently being conducted by the IDB project, which is researching the way

analysts use relations in real-world databases and the availability of commercial

object-oriented database management systems. We are continuing to coordinate

with the IDB project to define a representation of multiple relations that will satisfy

the needs of both our proposed simulation environment and the IDB project's

proposed object-oriented database.

HIGHLY INTERACTIVE INTERFACES

In the analytic military simulation domain, a single analyst is typically

the designer, user, and ultimate consumer of the results of a simulation and is

constantly evolving and refining the simulation even while it is being run. It is

important that the analyst be able to understand what the simulation does and why,

be convinced that it is doing the right thing, and he able to modify its behavior.

This is the motivation for what we call intelligent exploration and explanation. One

- 48 -

of the keys to this is the user's interface with the simulation. This must be

interactive and lucid, taking full advantage of modern graphics, without falling

prey to "the fetish of realism" (i.e., realism for its own sake).

In addition, since we perceive that multiple relations are ubiquitous in

simulatiors, we feel it is important to allow a user to disolay relations in a

perspicuous form (as an analyst would naturally draw them) and to edit them

graphically. Previous work on the automated display of diagrams (Vaucher, 1980;

Reingold and Tilford, 1981) and on allowing users to define relations graphically

(Bryce and Hull, 1986) has largely ignored the problem of inferring the semantics

of relations directly from drawn input.

We have defined and begun implementing a highly interactive graphics

environment that emphasizes the ease of manipulating simulation objects,

minimizes redundant display updating, allows animation of sequences of events

(such as causal chains), and eliminates graphic artifacts that have plagued

previous simulations (such as ghost images of objects after they have been

destroyed in the simulation).

We have currently implemented this environment in Franz LISP as a

"Graphics in LISP" package (GIL) that uses our Hose facility (Steeb et al., 1986) for

communication between LISP and C to access the GKS graphics routines for our

SUN vorkstations. (SunCORE was chosen initially as the most stable of the

graphics packages for the SUN, but we later ported GIL to GKS when it became clear

that GKS was a better standard than CORE.) GIL encapsulates the low-level

graphics package, so that switching to a different graphics standard in the future

(e.g., PHIGS, X-windows, or NeWS) should not be difficult. The use of graphics

standards provides device-independence and the flexibility of developing software

on both black-and-white and color SUNs. Though there appears to be a heavy

performance penalty for using GKS, we are evaluating whether the resulting

portability is worth this price and are trying to improve the graphics performance

of our current environment. We are also experimenting with Graphics in Prolog,

using Quintus Prolog's ProWindows package.

In our attempt to separate the machinery of the simulation environment

from the model of interest (as discussed in Section IV above), we have eliminated

the rneed of previous object-oriented ROSS simulations to update positions of

moving objects explicitly in simulation code. This is a source of both obfuscation

-49 -

and potential bugs in existing simulations, since it is necessary for the

programmer to remember to update the positions of objects whenever they might be

affected. We have designed and implemented a demand update strategy for

displaying the results of a simulation by computing graphic attributes of objects

only when necessary. This form of "lazy evaluation" automatically updates the

images of objects on the display at appropriate times and minimizes the redundant

update of graphic attributes as well as minimizing graphic output. This and a

number of other significant extensions to the ROSS language have produced an

interim language (referred to informally as "XROSS"), which is described in

Cammarata, Gates, and Rothenberg (1988).

We began investigating the display and editing of decision tree diagrams,

motivated by the use of such trees by the RSAC prnject at RAND (Davis, Bankes,

and Kahan, 1986). Our intent was to define a generic diagram editor analogous to

a syntax-directed program editor. This would allow the definition of

transformation commands with which the user could create, delete, or modify

logical entities such as boxes, bubbles, and links. Each command would cause both

logical and graphical actions that would simultaneously maintain a consistent

logical representation and graphic image of the intended diagram. Where a

logical structure allowed alternative graphical relationships among pictorial

elements, the diagram editor would choose a default, but the user would be allowed

to modify this choice to enhance readability (for example, moving "more

important" boxes to the top of a picture).

Though we consider this work to be important, we have postponed it in favor

of more urgent graphics tasks. We also hope to experiment with direct

manipulation of simulation objects, which we have called "graphic behavior

modification." For example, an analyst might define an avoidance maneuver for

an airplane (e.g., when it is attacked by a missile) by manipulating the

simulation picture of the airplane graphically (e.g., with a mouse), moving it

through a path that defines the desired avoidance response. The system would

generalize this behavior appropriately (taking into account directional

symmetries, etc.) so that a missile coming from a different direction would cause

the appropriate response.

For the immediate future, we expect to continue developing our current

graphics environment, integrating it with the reasoning techniques being

- 50-

explored with DMOD to perform intelligent exploration and explanation.

Whereas expert systems typically perform explanation by displaying chains of

inference (i.e., which rules fired to produce which results), our emphasis will be on

displaying sequences of graphical states in animated form in those cases where

the behavior of the simulation is displayable (such as the geographic movement of

troops in a river crossing scenario).

SENSITIVITY ANALYSIS

In all but the most trivial situations, it is impossible to run more than a tiny

fraction of all the potentially relevant cases of a simulation. Even if cases are

generated and run automatically, the computation time required is often

prohibitive, and the job of analyzing the results is monumental. It is important to

be able to analyze the behavior of a model in more powerful ways, such as by

performing sensitivity analysis on its parameters.

A simulation can be viewed as the computation of a single top-level function

involving hundreds or even thousands of parameters. Sensitivity analysis

attempts to show how sensitive the results of the simulation are to variations in

those parameters that are of interest in a given situation. This is especially

important for promoting confidence in the stability of the model (i.e., knowing that

its results are independent of minor changes to its parameters) and for indicating

which parameter values are the most important ones to validate (by real-world

means) in roJe t-c r,-.'k-e the modpl believ.able.

The naive approach to sensitivity analysis requires running a simulation

many times while perturbing individual parameters to see how the results differ.

We refer to this approach as "naive perturbation." This is prohibitive in most

cases, which is why sensitivity analysis is rarely performed. The intent of our

research is to provide a computationally feasible way of performing sensitivity

analysis in a simulation environment.

We have designed a new propagative approach to sensitivity analysis that

propagates and combines the sensitivities of functions through a computation.

This approach is motivated by the chain rule of the differential calculus, which

defines the partial derivative of a composite function as a combination of the

- 51-

partial derivatives of its subfunctions 3 (assuming these subfunctions are

differentiable with respect to the parameters of interest). Viewing a simulation as

a top level function that invokes many levels of nested subfunctions, each of which

is called many times (as illustrated in Figure 9), the naive approach to perturbing

top level parameters executes the top level function one or more times for each

parameter, each time executing each nested function. That is, each nested

function is executed a number of times proportional to the number of parameters of

the simulation (where the constant of proportionality is the number of times a

single parameter must be perturbed in order to approximate a partial derivative).

Our propagative approach instead computes a representation of the sensitivity of

each nested function (i.e., an approximation to its partial derivatives) the first

time it is executed (e.g., by perturbing it once for each of its own parameters) and

propagates that sensitivity information through the computation rather than

having to recompute it each time it is needed. Since most subfunctions have many

fewer parameters than the simulation as a whole, this approach results in their

Simulation (s, '-Is
s

f (fl,...fn) g (gl,....gn
f n

sine (a) q(ql,...,q n r (rl,...,rn
q r

sine (cx) sine (cx)

Fig. 9-Simulation as a high-level function

3in this discussion, we use the term "subfunction" to mean a function that is
called by another function, rather than one that is defined within the lexical scope of
another.

-52 -

being evaluated fewer times, thereby avoiding much of the cost of sensitivity

analysis. (Subfunctions that have as many or more parameters than their callers

are simply evaluated as in naive perturbation.) Note that, for simplicity, this

discussion focuses on sensitivity analysis in which one parameter at a time is

varied; however, the propagative approach applies equally well (and has even

greater potential "payoff') when combinations of parameters are varied together

(i.e., when higher-order partial derivatives are required).

We first implemented a program to analyze the expected payoff from this

propagative approach; this program performed a symbolic analysis of a

computation in order to see where the new approach would offer an advantage. We

encountered performance difficulties in applying this payoff analysis program to

any but the simplest functions, and we soon realized that the payoff analysis was

even more computationally intensive than the sensitivity analysis it was

attempting to analyze! The simple functions that we managed to analyze with this

payoff analysis program confirmed our hypothesis about the advantages of the new

approach, yet it became clear that it would be more efficient to analyze the payoff by

actually implementing a propagative environment and using it to perform

sensitivity analysis while collecting performance statistics. We therefore next

implemented a novel stand-alone computational environment in LISP to support

the propagation and combination of sensitivities. This environment has allowed

us to try our approach on a number of computations and to analyze its payoff.

Nct all functions in a given computation are of equal interest for sensitivity

analysis. Further, it may not make sense to analyze the sensitivity of built-in

functions (like the conditional function "cond" in LISP). Our computational

environment therefore allows the user to designate certain "candidate" functions

as those to be analyzed; these same functions are also instrumented by the

environment to keep track of such things as how often they are called. The user

further divides candidate functions into two groups depending on whether their

return values are discrete or continuous. Each candidate function is then

modified by the environment so that (among other things) it returns not only its

usual return value but also a representation of its sensitivity to each of its

arguments.

The sensitivity of a function is considered to be (an approximation to) the

collection of partial derivatives of the function with respect to its arguments. To

- 53 -

compute this, whenever a candidate function is called normally during a

computation (referred to as a "primary" call), the environment first causes the

function to compute its normal return value and then causes it to place recursive
"secondary" calls to itself, perturbing each of its arguments in turn. By so doing,

the function computes its sensitivity and returns this information to its caller

(along with its normal return value). During these secondary invocations, the

function places secondary calls to its candidate subfunctions; this approximates

the return values of these candidate functions, rather than recomputing them for

each secondary call. The approximation technique used is to apply the sensitivity

of each called function as a linear approximation of its value (where the sensitivity

of each called function is computed recursively by this same process and returned

to its caller). This process hinges on the notions of primary and secondary calls,

which we illustrate with a simple example, shown in Figure 10.

Consider a top-level function H that calls a candidate function F, which in

turn calls another candidate function G. For simplicity, suppose that F calls no

other candidate functions besides G and that G calls no candidate functiuns at all.

Further, suppose both F and G are continuous-valued, differentiable functions.

Since F is a candidate function, the propagative environment automatically

interprets H's call to F as a primary call (shown as "p-call" in the figure). Upon

receiving this primary call, F initializes its "approximation table" and proceeds to

compute its normal return value, in the course of which F calls G. Since G is also a

candidate function, the environment interprets this as a primary call as well.

Upon receiving this primary call, G proceeds to compute its normal return value

(since G calls no other candidate functions, it will have an empty approximation

table). Having computed its value (and before returning from its primary call), G

must compute its sensitivity (to be returned to F along with G's value, as the result

of F's primary call to G).

To compute its sensitivity, G perturbs each of its own arguments in turn,

placing a recursive secondary call (shown as "s-call") to itself for each

perturbation. For example, if G has only a single formal argument, whose

supplied value (in F's primary call to G) is X, then G will place a secondary call to

itself with an argument of(X+A), where A provides the perturbation. This

recursive secondary call to G returns the value G(X+A) to the primary invocation of

G, Assuming, for simplicity of exposition, that a single perturbation is enough to

- 54-

H 4
H P •• • = p-return

p-callf(AsF

init save compute Ik compute -F (A) *-"p approx S(G) return:r (A) 7 sensitivity: s(F)

p-return
p-call g(X, S(G)

G (X, .. • • .. compute •Ic" \€÷
-P' "" return: g(X)/ • sensitivity: s(G) -'

s-callss-retur
g(+)s-call fAA

""aompute aru Ft roximate

G (X+I() 1 return: g(X+A) w sensitiviting sG

SG
5

Fig. 10--Propagative sensitivity analysis

produce a linear approximation to its "partial" derivative, G computes the Cauchy
ratio (G{X+A) - G(X))/A as its sensitivity information (shown as "s(G)"), and

returns this to F along with G's normal return value (shown as "g(X)").

The value of the Cauchy ratio represents the sensitivity of G to its argument
(in the neighborhood of the point X); it can be interpreted geometrically as the slope

of the tangent to the function G at X or algebraically as a coefficient t such that

G(X+A) -G(X) + t * A. Tss latter interpretation is used subsequently by F as a

- 55 -

linear approximation to the value of G. In the more general case, where G had

several arguments, it would perturb each one, generating secondary calls to itself

to compute a Cauchy ratio for each partial derivative, and would return the

collection of the resulting coefficients as its sensitivity information.

When the primary call to G returns to F, F separates the return value g(X)

from the sensitivity information for G, which F stores as its approximation table

entry for this invocation of G. F continues executing its own primary call (from

H), using the value g(X) as needed to compute its own return value. Having

computed its value (and before returning from its primarý call), F computes its

sensitivity (to be returned to H along with F's value, as the result of H's primary

call to F). To compute its sensitivity, F perturbs each of its own arguments in turn,

placing a recursive secondary call to itself for each perturbation. The results of

these recursive secondary calls are used to compute the Cauchy ratios for F's own

partials, as was done for G. However, during these secondary calls, whenever F
would normally call G, it now places secondary calls to G, using its approximation

table entry for G to approximate the value of G. This is the essence of the

computational payoff of the propagative scheme.

To summarize, a primary call to a candidate function calculates its normal

return value, in the course of which it places primary calls to any candidate

functions it calls. The primary call then initiates a series of recursive secondary

calls by the function to itself, to compute its sensitivity by perturbing its

parameters. In addition, the primary call causes the function to initialize an
"approximation table" for approximating the return values of those candidate

functions that it calls during its recursive secondary invocations. It is the ability

to approximate these return values (rather than recomputing them) that allows the

propagative approach to outperform naive perturbation. Each call to a candidate

function G by a given function F will generate an entry in lPs approximation

table. This entry will contain sensitivity information (about the called function

G) that was returned to F by G (in response to F's primary call to G). This

sensitivity information (which is a representation of G's partial derivatives)

serves as a linear approximation for the value of the called function G. When F

has completed perturbing its parameters via recursive secondary calls, it will have

derived ;t s own sensitivity to it. pnr-ameters: This information is returned by F to

its caller to serve as F's entry in its caller's approximation table.

-56 -

A secondary call by a function F to a candidate function G essentially

replaces the evaluation of G with an approximation, using the entry for G in F's

approximation table. This entry was returned to F by G itself when F placed its

primary call to G.

The environment we have implemented (in LISP) requires that the user

declare which functions in a computation are candidate functions and which are

discrete. It arranges for primary and secondary calls, as necessary and for the

computation and propagation of sensitivity information.

Our initial results indicate that this propagative approach has tremendous

potential, reducing a combinatorial process to a linear one; however, additional

research is needed before the approach can be integrated into our simulation

environment. For example, although Boolean derivatives and a Boolean version

of the chain rule can be defined (Blanning, 1987), the general case of symbolic-

valued functions requires further thought. Our computational environment

allows functions of this sort, but only applies the p-opagative approach to those

functions that are differentiable in the usual sense, performing "naive"

perturbation for all others. However, even without such extension, we expect this

new ipproach to have a major impact on the feasibility of sensitivity analysis in

simulation.

VARYING THE LEVEL OF AGGREGATION OF A MODEL

Current simulation models cannot vary the level at which they are

aggregated: The desired level of aggregation is chosen in advance and the

simulation is designed for this level. C anging this level typically requires

considerable reprogramming of the simulation; changing it under user control or

dynamically is generally unthinkable. Structured (or "composite") objects are

poorly supported by traditional object-oriented environments. Only ad hoc

mechanisms exist for representing part-whole relations (such as the fact that a

brigade consists of several battalions), and there are no automatic facilities for

maintaining attributes that are the sums of attributes of the parts of an object.

Similarly, only the lowest-level objects in the hierarchy are expected to receive and

react to messages (i.e., interact with other objects) in a simulation. These

limitations make it difficult to represent even static, uniform aggregation (in

which all peer objects, such as brigades, are aggregated to the same level

- 57-

throughout the simulation), since objects Lt various levels of the hierarchy must

maintain attributes representing summary information about their parts and

must be able to interact with objects at their peer level.

Dynamic aggregation compounds these problems by requiring the ability to

switch levels a, ruintime. For example, an aggregated object (such as a brigade)

that is asked to disaggregate itself would be required to generate subordinate

objects (such as battalions) obeying reasonable constraints for how the attributes of

the whole should be distributed among these parts. Nonuniform aggregation

allows the interactions among objects to cross peer levels, so that, for example, an

aggregated brigade in one sector can interact with disaggregated battalions in

anothe- sector. This allows "focusing the attention" of a simulation by

disn:-gregating only those areas or aspects that are of particular interest.

Dynamic, nonuniform aggregation requires the ability to reroute interactions to

the appropriate levels dynamically.

We d. not yet envision simulations that can be automatically aggregated to

any arbitrary level (without a prior modeling effort at that level), since that would

amount to an "automatic programmng" environment. Instead, we restrict our

attention to 1;iodels in which a fixed set of possible levels of aggregation have been

defined in advance (when building the model). That is, we expect dynamic

aggregatioi .o be f erformed on a model that has been constructed with aggregation

in mind: The model will actually consist of a suite of coordinated models at

various potential levels of aggregation.

Note that if a simlation is designed at the most disaggregated level that

might ever be desired, aggregaLed results can be computed after the simulation is

run; we refer to this (somewhat arbitrarily) as "abstraction" to distinguish it from

aggregation. Unfortunately, running a highly disaggregated, detailed model

may be unwarranted (i.e., unaffordable) in many cases. Furthermore,

abstraction does not allow the user to interact with the simulation at different levels

of afrec ation (providing different "views" of the model) and is therefore a poor

s.Abst' Aute for dynamically variable aggregation.

The fact Lhat the level of aggregation of a model gets "frozen in" early in its

desy-ri is a major impediment to the reusability of model d the utility of

simulation in general. Users should be ab!e to vary the level of aggregation (or

'resolution") of a simulation and to indicate which aspects of the model are of'

- 58 -

particular interest, running those aspects of the simulation disaggregated while

running peripheral aspects at higher levels of aggregation. This goal has been

addressed only in very limited contexts at a theoretical level (Fishwick, 1986). We

are developing te hniques for building simulations whose level of aggregation

can be varied both statically and dynamically by representing "vertical slices" of

objects in an aggregation hierarchy (for example, divisions, brigades, battalions)

and allowing interactions between objects at different levels of aggregation.

We have taken an object-oriented approach to representing aggregation, in

which objects are used to represent each of the levels of aggregation. We associate

behaviors and attributes with composite objects that simulate the behavior of their

subordinates and maintain attributes representing aggregations of the attributes of

those subordinates. We have successfully prototyped a scenario fragment using

this approach. The fragment consists of a military company made up of several

plat s: the simulation is plan-driven to provide a framework for coordinatin.

the ictions of units at various levels. Various aggregation and disaggregation

functions are defined for switching among aggregation le'k As.

Our results to date indicate that dynamic aggregation is feasible, so long as

the multilevel model is developed with certain consistency criteria held firmly in

mind; this can be viewed as a semiformal aid to developing coordinated,

consistent multilevel models, which has heretofore been akin to alchemy.

Our prototype was coded in the interim language 'XROSS," implemented ')n

top of ROSS in Franz LISP. Unfortunately, the XROSS extensions (as well as those

that implemented dynamic aggregation) could only be run interpretively,

resulting in a severe performance penalty. We are currently recoding both

XROSS and dynamic aggregation in Common LISP to permit compilation. Once

this is accomplished, we intend to expand the protot - into a more realistic

demonstration of our approach.

MODELING "FOFT" CONCEPTS

Policy analysts often use simulations to try to answer qualitative questions

involving intangible, "soft" concepts: factors that appear to be important but are

hard to quantify. Some examples are troop morale breakdown following heavy

luti, ,he iiiipuwL tas uf .0iaenAturn in, a hasty attack, or the effects of panic in

chLmical or biological warfare. Such factors can have major impacts on the course

- 59 -

and outcome of a situation, but they are extremely difficult to model with metrics

such as communication delays, effective force ratios, or other directly quantitative

criteria.

These "soft" concepts (or "constructs") can best be modeled by analyzing

their underlying or contributing factors and subjectively aggregating these to

arrive at an estimate of the construct itself. Fore example, morale can be

considered to be composed of factors such as sleep deprivation, hunger, casualty

level, weather, and b, mbardment level; these factors can then be aggregated to

derive an estimate of morale. Because of the complexity of this process, such

qualitative factore are rarely introduced into military Fimulations (Davis and

Winnefeld, 1983), and then only at a surface level.

To investigate building models that incorporate qualitative notions of this

kind, we initially focused on the concept of "initiative" as used by military

analysts. The following quotations motivate this choice:

The Army's AirLand Battle Doctnne is based on using initiative,
depth, agility, and synchronization to gain the advantage against
numerically superior forces In essence, if a commander can
decide and execute more quickly than the opposition, the objective of
achieving the initiative will be assured.

- DARPA (1986)

The stereotypical Soviet military leader is seen in the West as being
prevented from exercising initiative on the battlefield and thus
unable to take full advantage of opportunities that may come his way.

-Armstrong (1984)

Quotations like thuse suggest building a simulation model that reflects what

the term "initiative" means to analysts, so that we can submit statements like the

above to experimentation within a simulation. Analysts seem to use the term

"initiati ie" to meani the ability to consider a wide range of options and act with

great flexibility in the absence of direct instruction. Furthermore, many analysts

ass:ine that blue force commanders possess greater initiative than their Red force

counterparts; from this assumption, analysts conclude that Blue forces would be

more effective than simple forre ratios would suggest. This conclusion (though not

the assumption on which it is based) could be verified if an appropriate model of

initiati•,e were built into the representations of commanders in a simulation.

- 60 -

We have researched this concept in the literature and among RAND

analysts. We have also identified a methodology for acquiring analysts' models

of such concepts; this involves a blend of expert-systems knowledge engineering

and an algebraic modeling techmque developed at RAND for use in judgment

research (Veit, Callero, and Rose, 1984). (This methodology produces an algebraic

model showing the quantitative relationship between a construct such as initiative

and the component concepts and attributes that comprise it.) Based on this

research, we have proposed a number of approaches to modeling initiative. For

example, to the extent that initiative consists of having greater freedom of choice in

making decisions, it might be modeled by a simulation of a commander as an

inferencing process having variable inference capabilities or variable access to

relevant data for making inferences. Additional thoughts on this subject are

presented in the appendix.

As we explored these ideas, we became convinced that our initial goal was

too narrow. To model "soft" concepts, it is necessary to model commanders; but

this requires nothing short of modeling the decisionmaking process as a whole

and building simulations that are driven by plans (just as the real-world actions of

commanders are based on the plans they formulate or receive from their

commanders). Modeling decisionmaking is also central to modeling command

and control issues, which are of great current interest in the modeling

community. There is no question that this is a worthy area for research; however,

we do not feel we currently have the resources to do it justice. We have therefore

decided to postpone further work on this task until we can reexamine it in this

expanded context.

THE RIVER CROSSING SCENARIO

We originally planned to explore, develop, and integrate knowledge-based

simulation in a realistic batt!e management application. This was to be done in

an evolutionary manner, beginning with an expansion of the TWIRL (Tactical

Warfare in the ROSS Language) scenario used originally in the development of

ROSS. TWIRL is based on a hasty river crossing operation by Red forces against

a Blue hasty defense. The crossing operation is a maneuver involving combined

arms teams (infantry, artillery, armor, electronic combat, etc.) on both sides, with

coordinated actions and critical timing requirements. The maneuvers are

- 61 -

primarily the responsibility of the division commander, but many decisions are

made at the regiment, battalion, and company levels. This would have facilitated

the examination of multiple levels of aggregation, representation of different

relations among units, and exploration of issues of initiative.

We expected to add a number of enhancements to the TWIRL scenario,

including a detailed terrain database, line-of-sight and mobility calculations,

rules for coordination of forces, and details of the actual river crossing itself (the

TWIRL simulation concentrates on the advance to the river, and models only

high-level actions). Our plan was to integrate this augmented TWIRL scenario

into a larger tactical warfare scenario, drawing on work being performed in other

projects at RAND. This larger scenario would add complexity, scope, and realism

to the effort, as well as providing a bridge between several RAND projects.

However, we modified this initial plan for several reasons. First, we began

to feel that the river crossing was too ground-specific and did not reflect current

concern with integrated air-land operations. Second, we realized that since

detailed scenario development of this kind was already being pursued by other

projects at RAND, continued vork in this orea on our part would be redundant.

Finally, we realized that the modeling techniques we are exploring do not require

the detail of an elaborate scenario but are more appropriately demonstrated within

simplified scenarios that are abstracted from an integrated air-land scenario.

We have accordingly focused our attention on building simpler demonstration

scenarios (such as the one illustrated above in Section VI) that exhibit the

phenomena and degree of complexity relevant to our new techniques. As these

techniques are shown to be worthwhile, we will seek to apply them to real, ongoing

analysis studies, rather than attempting this prematurely.

- 62-

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Knowledge-based simulation attempts to bring together the best ideas of

object.oriented simulation, AI, and interactive graphics to produce a new kind of

modeling environment. The single most important goal of this effort is to improve

the corn prehensibility of the modeling process.

One of the most common complaints among military analysts is the

incomprehensibility of the models available to them. Incomprehensibility leads to

both a software engineering problem (an incomprehensible program is unlikely to

be correct) and a modeling problem (an incomprehensible model is unlikely to be

valid), Both the model and the program that implements it must be comprehensible

in order to have any confidence that the program correctly implements a valid

model. The KBSim project described in this Note has taken several crucial steps

toward improving the comprehensibility of simulations, as summarized here.

The use of explicit, human-meaningful knowledge in the specification of a

model makes it directly comprehensible. To the extent that the modeling

environment can draw inferences from this knowledge using comprehensible

procedures (for example, by running a simuiation), the entire process becomes

comprehensible to the modeler and user. Our use of DMOD is an attempt to

represent knowledge and inference procedures in a way that greatly improves the

comprehensibility of a simulation, while still being computationally efficient.

The focus on objects in object-oriented simulation has neglected the event as an

entity in ias own right. The event view encapsulates the causes, effects, and side

effects of events in much the same way that the object view encapsulates the

attributes and behaviors of objects. We provide both views in DMOD, since each

has significant advantages for some purposes.

Comprehensibility must not be thought of as a purely static quality: It is

equally important that the user of a model be able to comprehend the behavior and

dynarnics of the phenomena being modeled. We have broadened the traditional

("toy duck") view of simulation to allow the user to ask questions of the model that

go beyond "What if... ?" In addition, providing the user with capabilities for

stopping, querying, backing up, and rerunning a simulation-as well as

- 63 -

explanatory capabilities such as showing causal chains-adds a new dimension to

the comprehensibility of the dynamics of a model.

Our work in XROSS (as well as DMOD) Iras shown how to eliminate certain

key simulation artifacts having to do with autonomous behavior over time, as well

as certain simulation environment artifacts having to do with updating the

display of simulation state. Our initial experiments suggest that a coordinated

suite of multilevel models can be built to allow dynamic aggregation. The

consistency criteria that must be developed in the process can be regarded as semi-

automated tools for model building. The initial results of our propagative apprc ach

to sensitivity analysis suggest that our approach may ultimately make this process

cost-effective for a wide range of computations, including much of what goes on in

a typical military simulation.

Viewed abstractly, our work to date has:

"• Developed new techniques for eliminating artifacts

- XROSS extensions
- Elimination of explicit "unplanning" via DMOD1

"• Developed new techniques for answering Beyond "What if. "

questions

- Logic-based simulation/reasoning via DMOD
- New propagative approach to sensitivity analysis

"• Evolved a new "multi-view" paradigm for modeling

- Object and event views
- Multiple relations among objects
- Dynamic aggregation

On the other hand, we have avoided or postponed investigating certain

issues; i:o particular, we have not:

Concentrated on performance issues, except indirectly through:

- Update-on-demand ("lazy evaluation") strategy (XROSS)
- Elimination of explicit "unplanning" (DMOD)
- Aggregation to "focus the attention" of a simulation

- New computationally feasible approach to sensitivity analysis

* Pursued the modeling of "soft concepts"

Which requires major investment in modpling rIkcisionmaking

- 64 -

Implemented a detailed scenario demonstration

- Our original river crossing scenario lacked air-land integration

- A simple air-land scenario has been evolved in DMOD

- A fragmentary land scenario has been developed for aggregation

Continued research in knowledge-based simulation must investigate all of

these areas in further detail. Though we have made what we feel is significant

progress, there are still many unexplored issues. Some of these issues have been

discussed in the above sections and will be the subject of future publications; others

will only emerge as our research progresses. In particular, we hope to:

" Explore the use of reasoning to provide validation

- Pursue interactive exploration and explanation
- Develop techniques for valid composition of models
- Explore formal specification of models and scenarios

" Pursue multiple views for validation through comprehension

- Integrate the object and event views of models

- Integrate multiple relations, aggregation, and extended objects

Thnere seems to be little agreement as to what validation means or ought to

mean. We feel that this subject is too vital to ignore, and we intend to interact with

other modelers in an attempt to refine an operational definition of validity. This

investigation must distinguish between "face" validity (associated with various

kinds of "realism") and true validity, and it must question the common, implicit

assumption that greater detail in a model necessarily produces greater validity.

We hypothesize that the reasoning techniques we have been exploring will

contribute to validation in several ways. First, the ability to ask questions of a

model that extend beyond "What if. .. ?" should allow a model builder to verify the

behavior of a system (i.e., to make sure that it behaves as intended). Though this is

not sufficient to ensure the validity of the model itself, it is necessary to ensure that

the system correctly implements the intended model. Second, we believe that the

logic-based approach embodied in DMOD will allow the development of formal

techniques for composing submodels, while ensuring that validity (if it is present

in the submodels) is preserved in their composition. Finally, we believe that a

suitable generalization of DMOD can serve as a formal specification language for

models; we believe that this formalism may also provide a means of validating

- 65 -

scenarios (as suggested in Builder, 1983). We therefore intend to continue our

exploration of these research areas and the development of these techniques.

In addition, we believe that making a model more comprehensible by

providing multiple views (objects, events, multiple relations, aggregation, etc.)

will make validation easier by making it more apparent what the actual model is.

We therefore intend to continue our development of the multi-view paradigm in

order to improve the comprehensibility of models.

We believe that these research efforts will ultimately lead to a new

generation of simulation environments that are at once more powerful, more

flexible, and more comprehensible than those currently available.

- 67 -

Appendix

MODELING INITIATIVE IN COMMANDERS

As discussed in Section VI above, we have decided to postpone our work in

the area of modeling soft concepts such as "initiative," since in order to model

commanders, it is necessary to model the decisionmaking process as a whole and

to build simulations that are driven by plans (just as the real-world actions of

commanders are based on the plans they formulate or receive from their

commanders). The following summarizes the results of our initial exploration of

this area.

The qualitative concept we chose as an example of modeling "soft" concepts

is "initiative." This concept is often mentioned in the literature (Peters, 1986;

Vorobyov, 1983; Donnelly, 1984; Armstrong, 1984) and appears to differentiate U.S.

and Soviet tactics in ground warfare, especially in river crossing operations.

Initiative is usually described as having the freedom and capability to plan and act

independently. A commander exercises little initiative if he simply executes

detailed instructions passed down from his superior. Initiative is also absent if the

commander responds to situations "by the book," invoking responses according to

predetermined rules.

A popular notion is that the Soviets exhibit little initiative in their

operations, relying on centralized command and lockstep execution of their plans,

while the US. forces tend to be more distributed in nature, with lower command

levels having more responsibility and initiative. For example, the Soviets tend to

drill their units heavily on a few preset plans, while the American forces train

reactive decisionmaking skills. To a certain extent, this reflects the Soviet

emphasis on coordinated, offensive actions and the West's focus on defensive

operations. Even in a defensive operation, though, the Soviets have been known to

forgo opportunities, preferring preplanned applications of force over the use of

initiative. They typically provide detailed contingency plans to their

commanders, and often will not take advantage of an unplanned opportunity, as

this might throw off their overall plan. On the other hand, U.S. forces attempt to

capitalize on any weaknesses or opportunities that present themselves.

- 68 -

These generalities are not absolutely true, of course, as commanders on both

sides have been found to have a wide range of command styles; for example, this

was true in the Kabul operation in Afghanistan, where the Soviets undertook a

rapid, high-risk attack at night in a strange city (Luttwak, 1985).

Initiative can be useful in some circumstances and detrimental in others.

The advantages of initiative are that lower echelons of command can

opportunistically respond to threats, without having to rely on vulnerable and slow

communication links or having to act in a stereotypical manner in accordance

with pre-specified tactics. Many of the goals of AirLand 2000, such as surprise,

rapid maneuver, disruption, and quick reaction, should be facilitated through use

of greater initiative (Martin, 1983; U.S. Army TRADOC, 1981). Too much

initiative, on the other hand, can result in reduced coherence of overall planning

and execution. High level commanders cannot confidently rely on units to act in

a coordinated manner, and low level commanders can build up few expectations

about neighboring forces, unless there is substantial communications traffic.

These considerations are especially important in a highly coordinated offensive

operation with tight time lines. As noted earlier, the Soviets tend to concentrate on

such offensive operations in their war plans, while U.S. and NATO forces

typically focus on dlefensive operations (Veit, Rose, and Callero, 1981).

Another aspect that differentiates Soviet and Western views on initiative is

command organization. Soviet units are typically very cohesive and centralized

in their organization. A Soviet commander is frequently responsible for all

operations in a unit, while a U.S. commander tends to delegate authority. For

example, a U.S. commander may use "management by exception," in which the

subordinate units will ask for help only if they cannot accomplish their assigned

objectives. The Soviets will more often give specific orders, with deviation by the

subordinate allowed only after an authorization by the commander. Soviet and

U.S. units are also different in composition; U.S. units employ cross attachment of

forces with other units, changing the force mix when necessary, while the Soviets

tend to fix forces with the commander (even including reserves). The Soviets also

use communication networks that overlap as many as three echelons, allowing

commanders to contact low level subordinates directly; U.S. communications

usually have one network for each echelon (Patrick, 1979). All of these factors

- 69 -

presumably lead to a centralization of authority and reduction of initiative in the

Soviet system.

Our initial plan (which we have postponed, as discussed in Section VI above)

was to model many of the above factors to produce a range of apparent levels of

initiative. The specific behaviors would result from interviews with commanders

and from studies of Army Field Manuals FM 90-13 and FM 30-102 and the Soviet

Military Thought series (Grechko, 1975; Kozlov, 1971; Chuyev and Mikhaylov,

1975). The resulting models would be consistent with these sources but were not

expected to be absolutely complete. or definitive. We planned to check that the

resulting simulation ")ehaviors were plausible and realistic (by interacting with

commanders), but we did not intend to spend excebsive amounts of time ensuring

that the resulting models were internally consistent and valid, since the main

objective of our task was to exploro, evaluate, and demonstrate techniques for

modeling soft concepts such as initiative.

The primary factors we planned to model in our exploration of initiative

included command structure, communication links, types of messages sent (e.g.,

command messages, data, constraints, goals), message delays and degradations,

and decision time stress. These are all reasonably well-defined factors. Some

important but less well-defined factors include forms of situation assessment and

planning, and types of goal structure (e.g., attempting to achieve individual, unit,

or high level objectives). For example, we could model different forms of planning

present under different command regimes. The key planning forms seem to be

condition-response, projection-based planning, and optimization. Condition-

response planning is present when the decisionmaker applies a "cookbook" rule to

the situation, without extrapolating the consequences of the decision. This

involves minimal initiative. Projection-based planning also employs canned

responses, but is conditional on the decisionmaker's extrapolation of the

consequences. Optimization allows the greatest initiative, as the decisionmaker

is unconstrained in his generation and testing of new options.

To complete the simulation, we planned to collect and display performance

data sensitive to the presence of initiative. The key performance measures we

envisioned were communication load, decision response time, options considered,

number of cuordiation inesbages, and operational conflicts (firing at the same

target, moving into the same assembly area). These are in addition to the

-70-

"normal" outcome measures of attrition, FEBA (forward edge of battle area)

movement, etc.

A river crossing scenario would provide an excellent vehicle for exploring

the effects of allowing different degrees of initiative. Organization, tactics, and

procedures of both the Soviet and the U.S. forces could be varied. Table A.1

summarizes same key conditions, indicating low and high initiative levels.

Rather than exploring all combinations of the above factors, we planned to

examine several plausible combinations corresponding to extremes of Soviet and

U.S. doctrine.

The questicn of modeling initiativ its well with a number of other

objectives of the KBSim project. The structure and dynamics of the command

hierarchy, for example, arc Ikey issues in the modeling of object relations.

Communication and, decision dilays present with different command structures

are important to planning and temporal reasoning. Determination of vulnerable

communication links is important to explanation and exploration, as well as

providing insights about the effects of initiative. Finally, simulation at multiple

levels of aggregation is necessary to model the effects of different levels of

initiative. Highly detailed operations at the lower levels of command are

Table A.1

INITIATIVE CONDITIONS

Condition Low Initiative High Initiative

Type of order: Explicit instructions General goals

Planning mode: Condition response Projection, optimization

Comm network: Overlapping echelons Separate for each echelon

Division structure: Invariant Cross attachment

Command post (CP): Large, stationary CP Mobile tactical CPs

Troop type: Unseasoned, low capability Seasoned, capable

Command locus: Centralized Distributed

Mission type: fffenmive, deliberatoe Defensive, hasty

- 71 -

important when initiative is high, while top-level command operations are most

important during low initiative, highly scripted operations.

An additional interesting aspect of initiative is that of knowledge

distribution among units. Modeling different levels of initiative implies the need

to display the degree of knowledge required at different command levels. For

example, it is necessary to establish what data must be passed to the lower levels to

allow them to assess the situation, generate plans, and achieve local and aggregate

objectives. At the other end of the scale, it is necessary to establish what data are

necessary to execute and monitor a completely specified set of orders.

Although the study of initiative illuminates many interesting modeling

issues (as well as verifying practical questions of interest to analysts), we feel it

should only be undertaken within the larger context of modeling the human

decision process as a whole. We have therefore postponed further work in this area

until we can devote an appropriate effort to exploring this larger context.

713 -

BIBLIOGRAPHY

Anderson, R?. If., and J. J. Gillogly, RAND Intelligent Termrniral Agent (RITA),
Design Philosophy, The RAND Corporation, R-1809-ARPA, February 1976.

Anderson, R. H., and N. Z. Shapiro, Design Coihsiderations fo' - Cny~zputer-Ba,,.Z"
JinteractiveliMap Dieplay Systems, The RAND Corporr~tior. .%?J282-ARPA,
February 1979.

Anderson, It. H., et al-, RITA R~eference Manual, The RAND Corpc~ration,
R-1808-ARPA, September 1977.

Armstrong, hx. N., "Initiative Soviet Style," Militarýy Review, June 1984, pp. 14-27,

Blonning, R. W., "Sensitivity Analysis in Logic-based Moctels," Decision
Support Systems, Vol. 3, 1987, pp. 343-349.

Bowen , K, C., "Analysis of Models," University of London, Department of
Mathem'atics (unpublished), 19¶78.

Brachmaii, R. J., "What IS-A Is ind Isn't: An Analysis of Taxonomic Links in
Semantic Networks," Conz.-u~ter, Vol. 16, No. 10, 1983.

Bryce, D., and R. 110i, "SNAP: A Graph ks-based Schema Manager," The
P1roceedinigs of the International Conference on Data~ Engineering, IIEEE Cor
Society, Los Angeles, 19,q.

Builder, C. H., Toward a Calculus of Svenarios, 'rhe RAND Corporation,
N-1855-DNA, 1983

Callero, M., D. A. Waterman, and J. R. Kipp5;, TATR: A Pr(. -type Expert$ sytc
for Tacitcal Air Targeting, The RAND Corporation~, R..)0f .. RPA, August 1.984.

'iarn~rarata, S., 13 Cat,,s qnd J. Rothonmbprg, "1pneci rapl-iicnl
Interfaices in Object-Oriented Simulation Lan guages," I roceedings of the 1987
Winter Sirn elation Conference (Atlanta, GA, Dcxc. 14-16), Society for C()npwur~*

Simulation, San Diegr,, CA, 198,7, pp. 507-517.

CamtnnarLita, S. J., B3. L, (3au!, and J. Rrt-cA.e ýberg, D,2pendenricz)-n an.
G(uhu p/ica I litterfaces~ in thc ROSS La rigbige, Th e RIANI) ('0 P W
N-2-5S8c,-lA1(lW, Marich 19P8.

('arneqieý ';t oup, Inc., IKnowled.Ae Crc.- CRL 'hwhnicelW Man 'a!, l'ktsh,[urgh, 198C.

tChutyev, Yui V , and\ Yu. It. M.'halo. "F'orn-caiiting r, M~ilfta-y Affair.ý (A

!,(Vio't V~fnV)", S rJct AfIlLIfi' y 'P~o M, 1).S. (;ove~rin-1v Printirg
Ofv 'V'as~ ingt'. i,)C1, 1975.

(Xn I WaY, It '.,Sm Tat,I'Iahl PhWiS .inaintuiaion Ale/hod,T'hr'i.v Itt)
Corporation,](M. 32'i4-NI'! , ()ctohcr 1 962.

- 74 -

Cox, B. J., "Objective-C: Outlook," Journal of Object Oriented Programming,
Vol. 1, No. 1, April/May 1988, pp. 54-57.

Dalkey, N. C., "Simulation," in E. S. Quade and W. L. Boucher (eds.), Systems
Analysis and Policy Planning: Applications in Defense, Elsevier, New York, 1968.

DARPA (Defense Advanced R, search Projects Agency) Strategic Computing 2nd
A4 nnual Report, Washington, DC, FebruFry 1986.

Davis, M. R., and T. 0. Ellis, "The Rand Tablet: A Man-Machine Graphical
Communication Device," FJCC 1964, Spartan Books.

Davis, M., S. J. Rosenschein. and N. i. Shapiro, Prospects and Problems for a
General Modeling Methodology, The RAND Corporation, N-1801-RC, June 1982.

Davis, P K., and J. A. Winnefeld, The RAND Strategy Assessment Center: An
Over, w and Interim Conclusions about Utility and Development Options, The

RAND Corporation, R-2945-DNA, Marc& 1983.

Davis, P. K-, S. C. Bankes, and J. P. Kahan, A New Methodology for Modeling
National Command Level Decisionmak;ng in War Games and Simulations, The

RAND Corporation, R-3290-NA, July 1986.

Donnelly, C., "Soviet Fighting Doctrine," NATO's Sixteen Nations, Vol. 29 (3),
May/June 1984.

Ellis, T 0., J. FK. Heafter, and W. L. Sibley, The GRAIL Project: An Experiment
in Man-Machine Communications, The RAND Corporation, RM-5999-ARPA,
September 1969.

Erickson, S. A., "Fusing Al and Simulation in Military Modeling," AI Applied ti
Simulation, Proceedings of the European Conference at the University of Ghent,
1985, pp. 140-150.

Fishwick, P. A., "Hie, archical Reasoning: Simulating Complex Processes over
Multiple Levels of Abstraction," UF CIS Technical Repo.-t "R-86.6, Univerr;ty
of Florida, September 1986.

Gass, S. I., and R. - Sisson, A Guide to Modeis in Covernmenta, Planning and

Operations, U.S. Environmental Protection Agency, Washington, DC, 1974.

Gilmer, J. B., Parallel Simulation Techriques for Military Prcblem3, The BDM
Corporation, MNIar., VA, 1986.

Ginsberg, A. S., 1H. M. Markowitz, and P. M. (ldfather, Frograrnming bv
Qur,"ionnciire, The RAND Corporation, RM-4460-PR, April 1965.

Grc'hko, M.A.A. .",'he Armed Forces of the Soviet State (A Soviet View)," Soviet
Military 7"houht N.,. 12, U S. (G' vernment Printing Oflce, Wathir,gton, 'DC,
1975.

(Greenrerg,.. M1., M. A. Cre-i.,on, and B. L. Crissey, Moe/s in the Pr~licy Proce"
*L-,flr.,-l, , tl 016 ')L It.&2UIIi, &l l t UB NI l 1I1J .

- 75 -

Hilton, M. L., ERIC: An Object-oriented Simulation Language, Rome jiir
Development Center, RADC-TR-87-103, Rome, NY, 1987.

Hughes, W. P., Military Modeling, The Military Operations Research Society,
Inc., Alexandria, VA, 1984.

IntelliCorp, The SimKit System Knowledge-Based Simulation Tools in KEE,
Mountpin View, CA, 1985.

Kamins, M., Two Notes on the Lognormal Distribution, The RAND Corporation,
RM-3781-PR, August 1963.

Kpipj, J. R., B. A. Florman, and H. A. Sowizral, The New ROSIE Refererce
Manual and User's Guide, The RAND Corporation, R-3448-DARPA/RC, June
1987.

Kiviat, P. J., Digital Computer Simulation: Modeling Concepts, The RAND
Corporation, RM-5378-PR, August 1967.

Kiviat, P., R. Villanueva, and H. Markowitz, The SIMS CRIPT 1I Programming
Language, Prentice-Hall, Englewcod Cliffs, NJ, 1968.

Klahr, P., "Expressibility in ROSS: An Object-oriented Simulation System," Al
APPLIED TO SIMULATION: Proceedings of the European Conference at the
University of Ghent, February 1985, pp. 136-139.

Klahr, P., and D. A. Waterman, "Artificial Intelligence: A Rand Pee~spective,"
E xpert Systems Tecrkniqu es, Tools and Applications, Addison-Wesley, 1986,
pp. 3-23.

Klahr, P., et al., SWIRL: Simulating Warfare in the ROSS Language, The RAND
CoTp1 ;ration, N-1885-AF, September 1982.

Klahir, P., et al., TWIRL: Tactical Warfare in the ROSS Language, The RAND
Corporation, R-3158-.AF, September 1984.

Kozlov, S. N., "The Officer's Har. dbook," Soviet Military Thought No. 13, U.S.
Government Printing Office, Washington, DC, 1971.

Lultwak, E. N., The Pentagon and the Art of War, Simon and Schuster, New York,

Martin, If., "AirLand Battle 2000 Is Being Implemenrated with a High Technology
Light Divis'on," Military ElpctronicsICounterrneasures, January 1983, pp. 28-36.

--A, thuc. b).. B~uilding Learning and Tutoring Tools for Object-Oriented Simulation
Systems,T'h'i- 1-LAND Corporation, R-3443-DARPAJRC, July 1987.

M~cArthur, D., and P. Klahr, ihe ROSS Lonnguage Manual. The RAND
Corporation, N 1854-AF',,Septemi '982.

Mctkrthur, D., P. Klahr, arid S. Narair., RO'SS. An Object-Orientea Language [or
Con :truct~ng Simu~ations, . RAND Corporation, R.3160-AI', December 19841.

P),~. K iah-. Rnd ,-. Narairi, '/.e R~OSS Language Manual, The WNI
-at ~in N-1.'~4- 1. A!, September 1985.

- 76 -

McCarthy, J., and P. Hayes, "Some Philosophical Problems from the Standpoint of
Artiicial Intelligence," in B. Meltzer and D. Michie (eds.), Machine
Intelligence, Edinburgh University Press, Edinburgh, 1969.

McFall, M. E., and P. Klahr, "Simulation with Rules and Objects," Proceedings of
the 1986 Winter Simulation Conference, Washington, DC, 1986, pp. 470-473.

Newell, A., J. C. Shaw, and H. Simon, "Empirical Explorations with the Logic
Theory Machine," The Proceedings of the Western Joint Computer Conference,
Institute of Radio Engineers, New York, 1957.

Nugent, R. 0., and R. W. Wong, "The Battlefield Environment Model: An Army-
Level Object-Oriented Simulation Model," The Proceedings of the 1986 Summer
Simulation Conference, Society for Computer Simulation, San Diego, CA, 1986.

Paul, J., D. A. Waterman, and M. A. Peterson, "SAL: An Expert System for
Evaluating Asbestos Claims," The Proceedings of the First Australian Artificial
Intelligence Congress, Computerwo-ld, Ltd., Melbourne, November 18-26, 1986.

Peters, R., "Unmatched Spurs: A False Step in Soviet Doctrine?" Military
Intelligence, Vol. 12, No. 1, January-March 1986, pp. 14-58.

Quade, E. S., "Modeling Techniques," in H. J. Miser and E. S. Quade (eds.),
Handbook of Systems Analysis, Elsevier, New York, 1985.

Reingold, E. M., and J. S. Tilford, "Tidier Drawings of Trees," IEEE
Transactions on Software Engineering, Vol. SE-7, No. 2, 1981.

Rothenberg, J., "Object-oriented Simulation: Where Do We Go from Here?"
Proceedings of the 1986 Winter Simulation Conference, Washington, DC, 1986,
pp. 464-469.

Rothenberg, J., "The Nature of Modeling," in L. Widman et al. (eds.), Artificial
Intelligence, Simulation and Modeling, John Wiley & Sons, Inc., New York,
1989.

Rumbaugh, J., "Relations as Semantic Constructs in an Object-oriented
Language," Proceedings of the Conference on Object-Oriented Programming
Systems, Languages and Applications (OPSLA'87), Association for Computing
Machinery, Orlando, FL, October 4-8, 1987.

Sharpe, W. F., The Army Deployment Simulator, The RAND Corporation,
RM-4219-ISA, March 1965.

Sowizral, H. A., and J. R. Kipps, ROSIE: A Programming Environment for Expert
Systems, The RAND Corporation, R-3246-ARPA, October 1985.

Steeh, R., S. J. Cammrata, S. Narain, J. Rothenberg, and W. D. Giarla,
Coop(iratitye Intelligence for Remnotely Piloted Vehicle Fleet Control: Analysis and
,S,'imulaltion, The RAND Corporation, R-3408-ARPA, October 1986.

U.S Army, River Crossing Operations, Field Manual, FM 90.13, November 1978.

- 77-

U.S. Army, Assault River Crossing Operations, Army Field Manual Attachment,
FM 30-102, November 1977, pp. 16-6 to 16-13.

U.S. Army TRADOC, The AirLand Battle and Corps 86, Pamphlet 525-5, March
1981.

Vaucher, J. G., "rretty-Pr inting of Trees," Software-Practice and Experience,
Vol. 10, 1980.

Veit, C. T., M. Callero, Lnd B. J. Rose, Introduction to the Subjective Transfer
Function Approach to Analyzing Systems, The RAND Corporation, R-3021-AF,
March 1984.

Veit, C. T., B. J. Rose, and M. Callero, Subjective Measurement of Tactical Air
Command and Control-Vol. III: Preliminary Investigation of Enemy
Information Components, The RAND Corporation, N-1671/3-AF, March 1981.

Voosen, B. J., PLANET: Planned Logistics Analysis and Evaluation Technique, Thr-
RAND Corporation, RM-4950-PR, January 1967.

Vorobyov, I., "Developing the Commander's Initiative," Soviet Military Review,
May 1983, pp. 18-21.

Waterman, D. A., and M. A. Peterson, Models of Legal Decisionmaking, The
RAND Corporation, R-2717-ICJ, 1981.

